Appendix G. Phase II Environmental Site Assessment

Phase II Environmental Site Assessment

5770 Industrial Parkway San Bernardino, California 82407

June 9, 2021

Prepared for:

Dedeaux Properties, LLC 100 Wilshire Boulevard, Suite 250 Santa Monica, California 90401

Prepared by:

Stantec Consulting Services Inc. 735 East Carnegie Drive, Suite 280 San Bernardino, CA 92408

Project No.: 185805145

This document entitled Phase II Environmental Site Assessment was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Dedeaux Properties, LLC (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Joshua Sargent Associate Geologist

Reviewed by

(signature)

Alicia Jansen Associate Scientist

Approved by

(signature)

Kyle Emerson, CEG

Managing Principal Geologist

KYLE EMERSON
No. 1271
CERTIFIED
ENGINEERING
GECLOGIST

OF CALIFORNIA

Table of Contents

EXE(CUTIVE S	UMMARY	1.1
1.0	INTROL	DUCTION	1.1
1.1		RTY DESCRIPTION AND OPERATIONS	
1.2		RTY GEOLOGY AND HYDROGEOLOGY	
1.2	TIOL	INTI GEOLOGI AND ITI DINOGEOLOGI	
2.0	BACKG	BROUND	2.1
3.0	FIELD I	INVESTIGATION	3.1
3.1		RILLING ACTIVITIES	
3.2		FIGATION	
	3.2.1	Soil Boring Procedures	
	3.2.2	Soil Vapor Probe Installation	
	3.2.3	Soil Vapor Sampling	
	3.2.4	Field Equipment Cleaning Procedures	
4.0	LABOR	RATORY TESTING PROGRAM	4.1
5.0	INVEST	FIGATION RESULTS	5.1
5.1		OBSERVATIONS	
5.2		TICAL RESULTS	
	5.2.1		
	5.2.2		
6.0	CONCL	USIONS AND RECOMMENDATIONS	6.1
7.0	LIMITA	TIONS	7.1

LIST OF TABLES

Table 1 - Soil Analytical Results - Total Petroleum Hydrocarbons, Volatile Organic Compounds, and Organochlorine Pesticides

Table 2 – Soil Vapor Analytical Results

LIST OF FIGURES

Figure 1 – Property Location Map Figure 2 – Property Map

LIST OF APPENDICES

Appendix A – Soil Boring Logs Appendix B – Laboratory Data Sheets

Executive Summary

Stantec Consulting Services Inc. (Stantec) has prepared this Phase II Environmental Site Assessment (ESA) report for the property located at 5770 Industrial Parkway, City of San Bernardino, County of San Bernardino, California (the "Property", Figure 1), on behalf of Dedeaux Properties, LLC (Dedeaux, the "Client").

The Property consists of approximately 12.45 acres of land developed with one approximately 35,000 square foot building occupied by multiple wood pallet manufacturing and sales companies. Surrounding properties are a mixture of vacant land, commercial, and industrial properties including a large-scale propane gas sales facility. Railroad tracks are located adjacent to the south. An unpermitted landfill is reportedly located within approximately 200 feet of the Property. A Property location map is illustrated on Figure 1. A Property map illustrating the main features of the Property is provided as Figure 2. The Assessor Parcel Numbers (APNs) associated with the Property include 0266-041-22 and 0266-041-40.

The Property was undeveloped until the current building was constructed in circa 1982. Between 1982 and 2018, the Property was occupied by Fred G Walter & Son machine shop which specialized in mining industry equipment fabrication and repairs. Fuel and waste oil underground storage tanks (UST), abrasive blasting equipment, and a pressure washing area with an aboveground clarifier were used onsite. Hazardous materials utilized on-site included compressed gases, grease, oil, diesel fuel, solvents, and parts cleaner. Multiple notices of violation were issued for management of hazardous waste and use oil and waste spills.

Stantec completed a Phase I ESA for the Property which revealed the following evidence of recognized environmental conditions (RECs) in connection with the Property:

- Adjacent Railroad Tracks. Railroad tracks are located adjacent to the west-southwest of the Property. Herbicides are commonly applied to railroad alignments, and heavy metals associated with herbicidal application are commonly found in these areas. In the event of redevelopment of the Property, Stantec recommends collecting shallow soil samples along this Property boundary and submitting the samples to the laboratory for analysis of arsenic and lead. Soil sampling is recommended for protection of construction workers during redevelopment activities. Stantec also recommends soil sampling in the event that soil is removed from the site during redevelopment, which will require profiling by chemical analysis to determine the proper location for disposal.
- Former Property Features. The San Bernardino County Fire Department issued a "no further action" letter on February 12, 2020 for the former 5,000-gallon diesel UST, 5,000-gallon gasoline UST, and 1,000-gallon waste oil clarifier/sump on the Property. Small spills and leaks are common with these features, which have the potential to affect surrounding soil vapor conditions. However, no soil vapor data has been collected to evaluate whether soil vapor beneath the Property has been

impacted by the former USTs and clarifier/sump or the pressure washing station and drain. Therefore, these features are considered a REC to the Property.

- Groundwater Plume Associated with Newmark Superfund Site. The Newmark Groundwater Contamination Superfund Site encompasses 23 square miles and is located within the Bunker Hill Groundwater Basin. The groundwater plume extends beneath the Property. The groundwater contamination impacts the drinking water resources in the region. Chemicals of concern (COCs) include tetrachloroethylene (PCE) and trichloroethylene (TCE). The groundwater plume is considered a REC to the Property. Stantec recommends collection of soil vapor samples to evaluate whether soil vapor beneath the Property has been impacted by the groundwater plume.
- Cajon Landfill. The Cajon landfill is an unpermitted landfill that is located within 200 feet of the Property. Given the close proximity and potential for methane in the subsurface, the landfill is considered a REC to the Property. Stantec recommends collecting soil vapor samples on the Property to evaluate the potential methane impact to the subsurface from the nearby landfill.

To investigate these RECs, Stantec performed a Phase II ESA at the Property.

Phase II ESA Summary

On May 24, 2021, Stantec oversaw the advancement of two (2) soil borings (SB-1 and SB-2) and seven (7) soil vapor borings (SV-1 through SV-7). Stantec returned to the Property on May 27, 2021 to oversee the soil vapor sampling of SV-1 through SV-7. All soil and vapor borings are depicted on **Figure 2**.

Soils encountered during this assessment generally consisted predominately of poorly-graded sand with minor amounts of gravel to 15.5 feet below ground surface (bgs), the maximum depth explored during this investigation. PID readings were measured from 0.0 parts per million by volume (ppmV) up to 3.2 ppmV at location SV-1 and SV-3. Soil boring logs from this assessment are attached as **Appendix A**.

Laboratory analytical test results and methane field readings sheets from this assessment are attached as **Appendix B**. The laboratory test results from this investigation are discussed below and were compared to the more conservative value between the DTSC Human and Ecologic Risk Office (HERO), Note 3 screening levels for commercial land use (DTSC, 2020), and the USEPA Regional Screening Levels (RSLs) for commercial sites (USEPA, 2020). All soil concentrations are reported and discussed in units of milligrams per kilogram (mg/kg) and summarized in **Table 1**. Soil vapor concentrations are reported and discussed in units of micrograms per cubic meter (μ g/m³), evaluated using an attenuation factor (AF) of 0.03, and summarized in **Table 2**.

Low concentrations of TPHd and TPHo were detected in soil samples collected from locations SV-1 through SV-4. The detected TPHd and TPHo concentrations did not exceed commercial, or residential, use soil screening criteria.

No VOCs were detected above the laboratory reporting limits in the soil samples analyzed (*i.e.*, results were "non-detect").

Lead, commonly associated with pesticide and herbicide application, was detected in shallow soils adjacent to the nearby railroad easement up to peak concentration of 13 mg/kg. All detected lead concentrations are below within the southern California regional background range of 12.4-97.1 mg/kg, and below the commercial use screening level of 320 mg/kg. Arsenic was not detected above the laboratory reporting limit in the soil samples analyzed (*i.e.*, results were "non-detect").

The refrigerants trichlorofluoromethane (Freon 11) and dichlorodifluoromethane (Freon 12), and the chlorinated compound tetrachloroethylene (PCE) were detected in soil vapor samples during this investigation, as summarized below.

- PCE: at 171 μg/m³ (SV-5-15).
- Freon 11: up to 840 μg/m³ (SV-6-15 REP).
- Freon 12: up to 11,000 μg/m³ (SV-5-15).

All detections of Freon 11 and Freon 12 are below their respective soil vapor screening levels for commercial land use using an AF of 0.03. However, the single detection of PCE, located at boring SV-5 in the western corner of the Property at fifteen feet bgs, of 170 μ g/m³ exceeds the commercial use screening level of 67 μ g/m³, using an attenuation factor of 0.03. The PCE detection does not exceed the risk-based commercial screening level of 2,000 μ g/m³ using an attenuation factor of 0.001.

Methane was measured at 0.0 percent by volume (%vol) using the Landtec GEM 500 landfill gas meter in all soil vapor probes during this investigation. Further, oxygen (O_2) was measured at 16.1 - 19.9 %vol, and carbon dioxide (CO_2) was measured at 0.2 - 2.9 %vol.

Conclusions and Recommendations

This investigation has identified the presence of lead at low concentrations within shallow soils adjacent to the railroad easement which is adjacent southwest of the Property. All lead detections in this area are below commercial/industrial use soil screening criteria. Stantec recommends no further investigation related to the railroad easement located adjacent to the Property. Therefore, the adjacent railroad tracks are no longer considered a REC to the Property.

Measured methane, oxygen, and carbon dioxide content collected from soil vapor probes during this investigation are not indicative of soil vapor conditions being influenced by the nearby Cajon Landfill. Therefore, Stantec recommends no further investigation related to the Cajon Landfill. Vapor protection is not necessary to address methane or other landfill gases, and Cajon Landfill is no longer considered a REC to the Property.

This investigation has identified the presence of total petroleum hydrocarbons (TPH) at low concentrations within shallow soils near the former features at the Property, which include the USTs and oil sump/clarifier removed from the Property. All soil detections of TPH are below commercial/industrial use soil screening criteria. Soil vapor data collected in these areas of concern across the Site indicate the presence of the refrigerant VOCs Freon -12 and -13. All detected concentrations of these chemicals are below the commercial/ industrial screening levels using the most conservative attenuation factor (AF)

of 0.03, which DTSC uses for screening purposes. Therefore, Stantec recommends no further investigation related to the former USTs and oil sump/clarifier, and the former property features are no longer considered a REC.

This investigation has identified the presence of PCE in soil vapor at a single location (SV-5-15) at 170 μ g/m³, which exceeds the conservative commercial screening level of 67 μ g/m³ using an attenuation factor of 0.03. However, the detected concentration is below the risk-based commercial screening level of 2,000 μ g/m³ using an attenuation factor of 0.001, used by regulatory agencies to evaluate the necessity of vapor mitigation. PCE was not detected at any other location on the Property, and was not identified in the sample collected at 5 feet below ground surface (bgs). Given the PCE was only detected at the sample taken at 15 feet bgs, and no PCE was detected at any of the other six boring locations on the Property, the PCE is likely from the known groundwater plume associated with the Newmark Superfund Site, and not indicative of a source on the Property. Based on the low concentration of PCE detected at the Property vapor intrusion is not considered to be a significant concern and vapor mitigation is not required based on the current concentrations of these chemicals.

Given the long history of industrial operations on the Property, there is potential for undocumented structures (*i.e.* septic tanks, hydraulic lifts, and other buried objects) to be discovered during Property redevelopment activities. Therefore, Stantec recommends that a Soil Management Plan (SMP) be developed for the Property to be used during future earthwork activities.

The preceding summary is intended for information purposes; reading the body of the report is recommended.

Introduction

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) has prepared this Phase II Environmental Site Assessment (ESA) report for the property located at 5770 Industrial Parkway, City of San Bernardino, County of San Bernardino, California (the "Property", Figure 1), on behalf of Dedeaux Properties, LLC (Dedeaux, the "Client"). The assessment activities presented in this report were completed in accordance with Stantec's *Proposal to Perform Phase II Environmental Site Assessment*, dated May 6, 2021. This assessment was performed based on findings of a Phase I ESA performed for the Property by Stantec in 2021.

1.1 PROPERTY DESCRIPTION AND OPERATIONS

The Property consists of approximately 12.45 acres of land developed with one approximately 35,000 square foot building occupied by multiple wood pallet manufacturing and sales companies. Surrounding properties are a mixture of vacant land, commercial, and industrial properties including a large-scale propane gas sales facility. Railroad tracks are located adjacent to the south. An unpermitted landfill is reportedly located within approximately 200 feet of the Property. A Property location map is illustrated on Figure 1. A Property map illustrating the main features of the Property is provided as Figure 2. The Assessor Parcel Numbers (APNs) associated with the Property include 0266-041-22 and 0266-041-40.

The Property was undeveloped until the current building was constructed in circa 1982. Between 1982 and 2018, the Property was occupied by Fred G Walter & Son machine shop which specialized in mining industry equipment fabrication and repairs. Fuel and waste oil underground storage tanks (UST), abrasive blasting equipment, and a pressure washing area with an aboveground clarifier were used onsite. Hazardous materials utilized on-site included compressed gases, grease, oil, diesel fuel, solvents, and parts cleaner. Multiple notices of violation were issued for management of hazardous waste and use oil and waste spills.

1.2 PROPERTY GEOLOGY AND HYDROGEOLOGY

The Property is located within the San Bernardino Valley, which is bounded on the north by the San Bernardino Mountains and San Gabriel Mountains, on the south and east by the Badlands and Crafton Hills, and on the west by the San Jose Hills. The valley is underlain by several fault-bound structural blocks, including the down-dropped San Bernardino Valley Block between the San Andreas and San Jacinto faults, in the area of the Property, and the down-dropped Perris Block between the Elsinore fault to the west, the Cucamonga fault to the north, and the San Jacinto fault to the east. The San Andreas Fault is located within a ½ mile of the Property. Near-surface deposits in the Property area consist of sands, silts, and clays, sourced from the nearby San Bernardino and San Gabriel mountains. Specifically, soils encountered on the Property during this investigation consisted of poorly graded sand with minor amounts of gravel and silt to the maximum explored depth of 15.5 feet.

The Property is located within the Bunker Hill Basin of the Santa Ana River watershed. Groundwater in the basin is recharged by streams and creeks that carry surface water from the nearby San Bernardino

Introduction

and San Gabriel Mountains, and from direct infiltration of precipitation into the surface alluvial deposits. Groundwater in the area occurs within the upper and lower alluvial sediments, and within the subjacent Pelona Schist bedrock northeast of the Property. Groundwater elevations fluctuate extensively due to municipal supply and pumping and heavy recharge from the nearby mountains.

Groundwater monitoring data published on the California Water Resources Control Board database website Geotracker (www.geotracker.waterboards.ca.gov) indicates that groundwater within the area of the subject property flows in a southeasterly direction within the sediment units. Groundwater is reported at depths ranging from 120 to over 250 feet below ground surface (bgs) in the vicinity of the Property. Observed historical fluctuations in local groundwater elevations are on the order of up to 220 feet. The sand and gravelly sands typically found in the area of the Property have excellent water-bearing and water-yielding characteristics. No groundwater was encountered during this investigation.

Background

2.0 BACKGROUND

Stantec completed a Phase I ESA for the Property which revealed the following evidence of recognized environmental conditions (RECs) in connection with the Property:

- Adjacent Railroad Tracks. Railroad tracks are located adjacent to the west-southwest of the Property. Herbicides are commonly applied to railroad alignments, and heavy metals associated with herbicidal application are commonly found in these areas. In the event of redevelopment of the Property, Stantec recommends collecting shallow soil samples along this Property boundary and submitting the samples to the laboratory for analysis of arsenic and lead. Soil sampling is recommended for protection of construction workers during redevelopment activities. Stantec also recommends soil sampling in the event that soil is removed from the site during redevelopment, which will require profiling by chemical analysis to determine the proper location for disposal.
- Former Property Features. The San Bernardino County Fire Department issued a "no further action" letter on February 12, 2020 for the former 5,000-gallon diesel UST, 5,000-gallon gasoline UST, and 1,000-gallon waste oil clarifier/sump on the Property. Small spills and leaks are common with these features, which have the potential to affect surrounding soil vapor conditions. However, no soil vapor data has been collected to evaluate whether soil vapor beneath the Property has been impacted by the former USTs and clarifier/sump or the pressure washing station and drain. Therefore, these features are considered a REC to the Property.
- Groundwater Plume Associated with Newmark Superfund Site. The Newmark Groundwater Contamination Superfund Site encompasses 23 square miles and is located within the Bunker Hill Groundwater Basin. The groundwater plume extends beneath the Property. The groundwater contamination impacts the drinking water resources in the region. Chemicals of concern (COCs) include tetrachloroethylene (PCE) and trichloroethylene (TCE). The groundwater plume is considered a REC to the Property. Stantec recommends collection of soil vapor samples to evaluate whether soil vapor beneath the Property has been impacted by the groundwater plume.
- Cajon Landfill. The Cajon landfill is an unpermitted landfill that is located within 200 feet of the
 Property. Given the close proximity and potential for methane in the subsurface, the landfill is
 considered a REC to the Property. Stantec recommends collecting soil vapor samples on the
 Property to evaluate the potential methane impact to the subsurface from the nearby landfill.

To investigate these RECs, Stantec performed a Phase II ESA at the Property.

Field Investigation

3.0 FIELD INVESTIGATION

Prior to the commencement of fieldwork activities, Stantec made the following preparations:

3.1 PRE-DRILLING ACTIVITIES

- Stantec visited the Property to mark the proposed boring locations. Subsequent to the marking,
 Stantec notified Underground Service Alert (USA) of Southern California at least 48-hours prior to the commencement of drilling activities; and,
- In accordance with federal Occupational Safety and Health Administration (OSHA) regulations (29 CFR, Section 1910.120), Stantec developed a site-specific Health and Safety Plan (HASP) for the Property. All Stantec personnel and subcontractors associated with the project were required to be familiar with and comply with all provisions of the HASP.

3.2 INVESTIGATION

On May 24, Stantec supervised and directed the advancement of multiple soil and soil vapor borings at the Property. All work was conducted under the direct oversight of a State of California professional and included the following:

- Advancement of two (2) soil borings (SB-1 and SB-2); and,
- Advancement of seven (7) soil vapor borings (SV-1 through SV-7).

All boring locations advanced during this investigation are depicted on Figure 2.

3.2.1 Soil Boring Procedures

A hand auger was used for utility clearance purposes to a depth of five feet bgs within each soil vapor boring location. Soil samples collected within this interval were discharged directly from the hand auger into laboratory-provided pre-cleaned eight-ounce glass jars outfitted with Teflon ® -lined lids. All soil samples were labeled with the appropriate identifying information (boring location, depth, sample collection time, sample collection date), logged onto a chain-of-custody, and stored in an ice-filled cooler pending delivery to the analytical laboratory.

Once the five-foot depth has been reached, advancement of borings SB-1 through SB-6 was performed using a Geoprobe direct push rig. During advancement, sampling of subsurface soils was performed starting at a depth of approximately five feet bgs. All of the direct push borings were advanced and sampled using a Geoprobe 6620DT rig equipped with 4-foot-long by 1.25-inch inner-diameter sampler with acetate sample liners to the terminal depth of the borehole.

At each sampling interval, the sampler was driven into undisturbed soil using a hydraulic ram on the Geoprobe rig. Upon advancement of the sampler through the desired sampling depth interval, the

Field Investigation

sample liner was retrieved from the boring. The drilling and sampling sequences was then repeated at 5 feet intervals for the entire depth of the boring.

The soils from each of the direct push borings were visually examined by Stantec field personnel who classified the soils in accordance with the Unified Soil Classification System (USCS). A photo-ionization detector (PID) was used to monitor/field screen the soils collected. Field screening for VOCs was achieved by removing the soil from the uppermost sample sleeve and placing it in a zip-lock type baggie. A PID probe was inserted into the baggie to monitor the headspace for VOC vapors.

3.2.2 Soil Vapor Probe Installation

At the completion of drilling to target depth in soil boring SB-1 through SB-7, soil vapor points were installed in each boring and identified as soil vapor points SV-1 through SV-7. At each location vapor sampling points were installed at multi-depths at the five- and fifteen-foot depth intervals. Subsurface soil vapor probe installation was performed in accordance with the July 2015 DTSC "Advisory - Active Soil Gas Investigations" (DTSC Advisory).

Each sample probe was constructed with a 1-inch-long Airstone sampling screen set at the prescribed sampling intervals. Each of the sampling screens was constructed with a permeable Airstone vapor tip connected to ½-inch outer diameter Nylaflow tubing that was lowered to the bottom of the borehole and backfilled with filter sand, until approximately 12-inches of filter pack was placed. A transition seal consisting of approximately 12-inches of dry bentonite was then placed above the filter pack, followed by an annular seal consisting of hydrated bentonite until the next sampling interval was reached. The sequence was then repeated to install the second monitoring point, and/ or completely backfill the borehole. At the surface, the exposed nylon tubing was capped with tight fitting plastic endcaps and labeled to indicate sampling depth, and covered with plastic sheeting to protect against rainfall events. After placement of the soil vapor sample probes on May 24, 2021, subsurface conditions were allowed to equilibrate more than the DTSC minimum of 48-hours prior to leak testing and sample collection on May 27, 2021.

3.2.3 Soil Vapor Sampling

Soil vapor samples were collected on May 27, 2021 in accordance with the methods and procedures outlined by the DTSC Advisory, a minimum of 48-hours after installation in order to allow for equilibration.

Soil vapor from each location was field screened for the presence of methane using a LandTec GEM 5000 landfill gas meter. The field measurements were recorded, and VOC sampling was then commenced.

Prior to sampling, a shut-in test was conducted on the sampling train to ensure all connections and fittings were airtight. The shut-in test was performed on the sampling train by applying a vacuum of 100 inches of water to the sampling train and monitoring magnehelic gauges for a pressure drop for one minute. If loss of vacuum was observed, the fittings were adjusted as needed until no vacuum loss was observed during subsequent shut-in tests.

Field Investigation

After the sampling equipment passed the shut-in test, the probes were purged using an air pump outfitted with a low-flow module to remove internal air from the sample train (calculated from the internal volume of the tubing and probe tip); the void space of the sand pack around the probe tip; and the void space of the dry bentonite (in the annular space). Three internal volumes were purged from each sampling location at a rate less than 200 milliliters per minute (ml/min).

Immediately following purging the internal volumes, the soil vapor samples were collected into glass syringes at a flow rate not exceeding 200 ml/min, and delivered to an on-site mobile laboratory for analyses. A tracer compound of 1,1-difluoroethane (DFA) was placed above the surface seal and along the sampling train to evaluate the integrity of the seal. No tracer compounds were detected in the soil vapor samples collected during this investigation. Soil vapor sample analysis is discussed in Section 4.0.

3.2.4 Field Equipment Cleaning Procedures

To maintain quality control during drilling operations, all drill rods and reusable soil sampling equipment was decontaminated using a triple bucket rinse. Prior to drilling at a given location or sampling interval, all equipment coming in direct contact with soil samples was scrubbed with an Alconox scrub solution followed by a clean tap water rinse and then a final distilled water rinse. The disposable acetate soil sample liners were used for one sampling interval and then discarded.

Laboratory Testing Program

4.0 LABORATORY TESTING PROGRAM

Soil samples collected during this investigation were delivered under chain of custody to Environmental Treatment & Technology Inc., dba Advanced Technology Laboratories (ATL), located in Signal Hill, California. Soil samples were submitted for potential analyses of total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs, and lead by United States Environmental Protection Agency (USEPA) test methods 8015B, 8260B, and 6010B, respectively.

Soil vapor samples collected during this investigation were delivered under chain of custody and analyzed by an on-site laboratory, operated by H7p Mobile Geochemistry (H&P), based out of Carlsbad, California. All soil vapor samples were submitted for analysis of VOCs by USEPA test method 8260B. The laboratory data report is attached as **Appendix B**.

Investigation Results

5.0 INVESTIGATION RESULTS

5.1 FIELD OBSERVATIONS

On May 24, 2021, Stantec oversaw the advancement of two (2) soil borings (SB-1 and SB-2) and seven (7) soil vapor borings (SV-1 through SV-7). Stantec returned to the Property on May 27, 2021 to oversee the soil vapor sampling. All soil borings are depicted on **Figure 2**.

Soils encountered during this assessment generally consisted predominately of poorly-graded sand with minor amounts of gravel to 15.5 feet below ground surface (bgs), the maximum depth explored during this investigation. PID readings were measured from 0.0 parts per million by volume (ppmV) up to 3.2 ppmV at location SV-1 and SV-3. Soil boring logs from this assessment are attached as **Appendix A**.

5.2 ANALYTICAL RESULTS

Laboratory analytical test results and methane field readings sheets from this assessment are attached as **Appendix B**. The laboratory test results from this investigation are discussed below and were compared to the more conservative value between the DTSC Human and Ecologic Risk Office (HERO), Note 3 screening levels for commercial land use (DTSC, 2020), and the USEPA Regional Screening Levels (RSLs) for commercial sites (USEPA, 2020). All soil concentrations are reported and discussed in units of milligrams per kilogram (mg/kg) and summarized in **Table 1**. Soil vapor concentrations are reported and discussed in units of micrograms per cubic meter (μ g/m³), evaluated using an attenuation factor (AF) of 0.03, and summarized in **Table 2**.

5.2.1 Soil Results

Low concentrations of TPHd and TPHo were detected in soil samples collected from locations SV-1 through SV-4. The detected TPHd and TPHo concentrations did not exceed commercial, or residential, use soil screening criteria.

No VOCs were detected above the laboratory reporting limits in the soil samples analyzed (*i.e.*, results were "non-detect").

Lead, commonly associated with pesticide and herbicide application, was detected in shallow soils adjacent to the nearby railroad easement up to peak concentration of 13 mg/kg. All detected lead concentrations are below within the southern California regional background range of 12.4-97.1 mg/kg, and below the commercial use screening level of 320 mg/kg. Arsenic was not detected above the laboratory reporting limit in the soil samples analyzed (*i.e.*, results were "non-detect").

Investigation Results

5.2.2 Soil Vapor Results

The refrigerants trichlorofluoromethane (Freon 11) and dichlorodifluoromethane (Freon 12), and the chlorinated compound tetrachloroethylene (PCE) were detected in soil vapor samples during this investigation, as summarized below.

- PCE: at 171 μg/m³ (SV-5-15).
- Freon 11: up to 840 μg/m³ (SV-6-15 REP).
- Freon 12: up to 11,000 μg/m³ (SV-5-15).

All detections of Freon 11 and Freon 12 are below their respective soil vapor screening levels for commercial land use using an AF of 0.03. However, the single detection of PCE, located at boring SV-5 at fifteen feet bgs, of 170 μ g/m³ exceeds the commercial use screening level of 67 μ g/m³, using an attenuation factor of 0.03. The PCE detection does not exceed the risk-basked commercial screening level of 2,000 μ g/m³ using an attenuation factor of 0.001.

Methane was measured at 0.0 percent by volume (%vol) using the Landtec GEM 500 landfill gas meter in all soil vapor probes during this investigation. Further, oxygen (O₂) was measured at 16.1 – 19.9 %vol, and carbon dioxide (CO₂) was measured at 0.2 – 2.9 %vol.

Conclusions and Recommendations

6.0 CONCLUSIONS AND RECOMMENDATIONS

This investigation has identified the presence of total petroleum hydrocarbons (TPH) at low concentrations within shallow soils near the former features at the Property, which include the USTs and oil sump/clarifier removed from the Property. All soil detections of TPH are below commercial/industrial use soil screening criteria. Soil vapor data collected in these areas of concern across the Site indicate the presence of the refrigerant VOCs Freon -12 and -13. All detected concentrations of these chemicals are below the commercial/ industrial screening levels using the most conservative attenuation factor (AF) of 0.03, which DTSC uses for screening purposes. Therefore, Stantec recommends no further investigation related to the former USTs and oil sump/clarifier, and the former property features are no longer considered a REC.

This investigation has identified the presence of PCE in soil vapor at a single location (SV-5-15) at 170 μ g/m3, which exceeds the conservative commercial screening level of 67 μ g/m3 using an attenuation factor of 0.03. However, the detected concentration is below the risk-based commercial screening level of 2,000 μ g/m3 using an attenuation factor of 0.001, used by regulatory agencies to evaluate the necessity of vapor mitigation. PCE was not detected at any other location on the Property, and was not identified in the sample collected at 5 feet below ground surface (bgs). Given the PCE was only detected at the sample taken at 15 feet bgs, and no PCE was detected at any of the other six boring locations on the Property, the PCE is likely from the known groundwater plume associated with the Newmark Superfund Site, and not indicative of a source on the Property. Based on the low concentration of PCE detected at the Property vapor intrusion is not considered to be a significant concern and vapor mitigation is not required based on the current concentrations of these chemicals.

Given the long history of industrial operations on the Property, there is potential for undocumented structures (i.e. septic tanks, hydraulic lifts, and other buried objects) to be discovered during Property redevelopment activities. Therefore, Stantec recommends that a Soil Management Plan (SMP) be developed for the Property to be used during future earthwork activities.

Limitations

7.0 LIMITATIONS

The conclusions presented in this report are professional opinions based on data described in this report. The opinions of this report have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location and are subject to the following inherent limitations. Stantec makes no other warranty, either expressed or implied, concerning the conclusions and professional advice that is contained within the body of this report.

Inherent in most projects performed in a heterogeneous subsurface environment, continuing excavation and assessments may reveal findings that are different than those presented herein. This facet of the environmental profession should be considered when formulating professional opinions on the limited data collected on these projects.

This report has been issued with the clear understanding that it is the responsibility of the owner, or their representative, to make appropriate notifications to regulatory agencies. It is specifically not the responsibility of Stantec to conduct appropriate notifications as specified by current County and State regulations.

The information presented in this report is valid as of the date our exploration was performed. Site conditions may degrade with time; consequently, the findings presented herein are subject to change.

TABLES

Table 1 Summary of Soil Analytical Results - VOCs and TPH

5770 Industrial Pkwy. San Bernardino, California Stantec Project No.: 185805145

			TPH by 8015			VOCs by 8260								Metals by 6010	
Sample ID	Sample Depth (feet)	Sample Date	GRO	DRO	ORO	Benzene	Toluene	Ethylbenzene	p/m- Xylene	o-Xylene	PCE	TCE	Various	Arsenic	Lead
Commercial Sc	reening Levels (1)	420	440	33,000	1.4	5,300	25	2,400	2,800	2.7	6.0	Various	4.2	320
Southern Califo	rnia Background	d Levels ⁽²⁾	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	0.6-11.0 ⁽³⁾	12.4-97.1
SV-1-15	15	5/24/21	<1.0	2.1	4.1	<0.005	< 0.005	<0.005	<0.005	<0.010	<0.005	<0.005	<varies< td=""><td>NA</td><td>NA</td></varies<>	NA	NA
SV-2-15	15	5/24/21	<1.0	5.8	6.6	<0.005	<0.005	<0.005	<0.005	<0.010	<0.005	<0.005	<varies< td=""><td>NA</td><td>NA</td></varies<>	NA	NA
SV-3-10	10	5/24/21	<1.0	5.1	5.1	<0.005	<0.005	<0.005	<0.005	<0.010	<0.005	<0.005	<varies< td=""><td>NA</td><td>NA</td></varies<>	NA	NA
SV-4-10	10	5/24/21	<1.0	<1.0	2.8	<0.005	<0.005	<0.005	<0.005	<0.010	<0.005	<0.005	<varies< td=""><td>NA</td><td>NA</td></varies<>	NA	NA
SB-1-1	1	5/24/21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	2.5
SB-2-1	1	5/24/21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	13
SV-5-1	1	5/24/21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	11
SV-6-1	1	5/24/21	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	4.3

Notes:

All concentrations reported in milligrams per kilogram (mg/kg).

- (1) More conservative screening level between USEPA Region 9 RSL (November 2020) and DTSC HERO Note 3 (June 2020)
- (2) Background Concentrations of Trace and Major Elements in California Soils (Bradford et al., 1996)
- (3) Determination of a Southern California Regional Background Arsenic Concentration in Soil (Chernoff et al., DTSC, 2012)

Abbreviations

DRO - Diesel Range Organic

DTSC - Department of Toxic Substance Control

HERO - Human and Ecological Risk Office

GRO - Gasoline Range Organic

NE - Not Established

ORO - Oil Range Organic

PCE - Tetrachloroethylene

RSL - Regional Screening Level

TCE - Trichloroethene

USEPA - United States Environmental Protection Agency

VOC - Volatile Organic Compounds

BOLD Denotes analyte was detected above the laboratory reporting limit

< - Denotes analyte was not detected above the laboratory reporting limit

Table 2

Summary of Soil Vapor Analytical Results - VOCs 5770 Industrial Pkwy.

San Bernardino, California

Stantec Project No.: 185805145

			VOCs by 8260									
Sample ID	Sample Depth	Sample Date	1,1-DFA (LCC) PCE Freon-12		Freon-11	Other VOCs						
Commercial Screening	Level (0.03 AF)	(1)	NE	67	varies							
Commercial Screening	Level (0.001 AF	(¹⁾	NE	2,000	440,000	5,300,000	varies					
SV-1-5	5	5/27/21	<400	<80	4,400	410	<varies< td=""></varies<>					
SV-1-15	15	5/27/21	<400	<80	8,800	760	<varies< td=""></varies<>					
SV-2-5	5	5/27/21	<400	<80	4,400	400	<varies< td=""></varies<>					
SV-2-15	15	5/27/21	<400	<80	7,200	610	<varies< td=""></varies<>					
SV-3-5	5	5/27/21	<400	<80	1,400	<400	<varies< td=""></varies<>					
SV-3-15	15	5/27/21	<400	<80	5,400	420	<varies< td=""></varies<>					
SV-4-5	5	5/27/21	<400	<80	3,300	280 J	<varies< td=""></varies<>					
SV-4-15	15	5/27/21	<400	<80	7,500	540	<varies< td=""></varies<>					
SV-5-5	5	5/27/21	<400	<80	4,300	330 J	<varies< td=""></varies<>					
SV-5-15	15	5/27/21	<400	170	11,000	740	<varies< td=""></varies<>					
SV-6-5	5	5/27/21	<400	<80	4,000	310 J	<varies< td=""></varies<>					
SV-6-15	15	5/27/21	<400	<80	9,800	820	<varies< td=""></varies<>					
SV-6-15 REP	15	5/27/21	<400	<80	10,000	840	<varies< td=""></varies<>					
SV-7-5	5	5/27/21	<400	<80	1,500	<400	<varies< td=""></varies<>					
SV-7-15	15	5/27/21	<400	<80	5,200	310 J	<varies< td=""></varies<>					

Notes:

All reported concentrations reported in units of micrograms per cubic meter (ug/m³)

(1) More conservative value between DTSC HERO HHRA Note #3 (June 2020) and USEPA RSL (May 2020)

< : Results reported below Method Detection Limit.

Yellow shading indicates value above 0.03 AF commercial screening level.

Red shading indicates value above 0.001 AF commercial screening level.

Abbreviations:

AF - Attenuation Factor

DFA - Difluoroethane

DTSC - Department of Toxic Substance Control

Freon-11 - Trichlorofluoromethane

Freon-12 - Dichlorodifluoromethane

HERO - Human and Ecological Risk Office Human Health Risk Assessment

LCC - Leak Check Compound

PCE - Tetrachloroethylene

USEPA - United States Environmental Protection Agency

VOC - Volatile Organic Compound

FIGURES

APPENDIX A

Soil Boring Logs

LOCATION: 5770 Industrial Pkwy, San Bernardino, CA

PROJECT NUMBER: 185805145

DRILLING COMPANY: M&R Drilling

DRILLING EQUIPMENT: 6620DT

SV-1 PAGE 1 OF 1

Stantec

DRILLING: INSTALLATION: STARTED

STARTED 5/24/21

COMPLETED: 5/24/21

COMPLETED:

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft):

WELL / PROBEHOLE / BOREHOLE NO:

TOC ELEV (ft): INITIAL DTW (ft): NE BOREHOLE DEPTH (ft): 15.5

STATIC DTW (ft): **NE** WELL DEPTH (ft): ---

BOREHOLE DIAMETER (in): 2.25

PROJECT: Dedeaux - San Bernardino LOCATION: 5770 Industrial Pkwy, San Bernardino, CA PROJECT NUMBER: 185805145 STARTED 5/24/21

DRILLING COMPANY: M&R Drilling

DRILLING EQUIPMENT: 6620DT

DRILLING:

INSTALLATION: STARTED

WELL / PROBEHOLE / BOREHOLE NO:

LATITUDE:

SV-2 PAGE 1 OF 1

NORTHING (ft): EASTING (ft): LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): NE BOREHOLE DEPTH (ft): 15.5 STATIC DTW (ft): **NE**

WELL DEPTH (ft): ---

Stantec

BOREHOLE DIAMETER (in): 2.25

COMPLETED: 5/24/21

COMPLETED:

LOCATION: 5770 Industrial Pkwy, San Bernardino, CA

PROJECT NUMBER: 185805145

DRILLING COMPANY: M&R Drilling

WELL / PROBEHOLE / BOREHOLE NO: **SV-3** PAGE 1 OF 1

Stantec

DRILLING:

STARTED 5/24/21

INSTALLATION: STARTED

COMPLETED: 5/24/21

COMPLETED:

NORTHING (ft): LATITUDE: GROUND ELEV (ft): EASTING (ft): LONGITUDE:

TOC ELEV (ft): BOREHOLE DEPTH (ft): 15.5

LOCATION: 5770 Industrial Pkwy, San Bernardino, CA

STARTED 5/24/21

PROJECT NUMBER: 185805145

DRILLING:

COMPLETED: 5/24/21

COMPLETED:

INSTALLATION: STARTED

DRILLING COMPANY: M&R Drilling DRILLING EQUIPMENT: 6620DT

WELL / PROBEHOLE / BOREHOLE NO:

SV-4 PAGE 1 OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): NE BOREHOLE DEPTH (ft): 15.5

STATIC DTW (ft): **NE** WELL DEPTH (ft): ---

WELL CASING DIAMETER (in): ---BOREHOLE DIAMETER (in): 2.25

Stantec

LOCATION: 5770 Industrial Pkwy, San Bernardino, CA

PROJECT NUMBER: **185805145**

WELL / PROBEHOLE / BOREHOLE NO: **SV-5** PAGE 1 OF 1

Stantec

STARTED **5/24/21** DRILLING:

INSTALLATION: STARTED DRILLING COMPANY: M&R Drilling

DRILLING EQUIPMENT: 6620DT DRILLING METHOD: **DPT**

NORTHING (ft): COMPLETED: **5/24/21** COMPLETED:

EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft): INITIAL DTW (ft): **NE**

BOREHOLE DEPTH (ft): 15.5 STATIC DTW (ft): **NE** WELL CASING DIAMETER (in): ---

WELL DEPTH (ft): ---BOREHOLE DIAMETER (in): 2.25

SAMPLING			NT: Acetate		L CASING D GED BY: MF	В	ER (in):			HOLE DIA	METER (in): 2.25 AJ
Time & Depth (feet)	Graphic Log	nscs	Description	Sample	Time Sample ID Method	Measured Recovery (ft.)	Blow Count	PID Reading (ppmv)	Depth (feet)		Borehole Backfill
	<u>7</u>	SP	POORLY GRADED SAND AND GRAVEL WITH SILT; fine to coarse-grained; dry; no odor; no staining; minor asphalt and concrete debris POORLY GRADED SAND; SP; 10YR 3/3 dark brown; fine to coarse-grained; moist; no odor; no staining; few gravel; few fines		1210 SV-5-1 6010	1			-		x2 1/4" Nylaflow Tubing in Hydrated Hydrated Tubing in Hydrated Hy
5-		SP	no otalining, for graver, trace to for infoc		1215 SV-5-3			0.0	5-		Granular Bentonite
			SAME AS ABOVE ; 10YR 4/4 dark yellowish brown						-		Filter Pack
10-								0.0	10-		
EC0001.GDT 5/24/21 - 15 -			coarse-grained; few fine sand SAME AS ABOVE; few to little silt					0.0	15-		Dry Granular Bentonite 1" Airstone in #3 Sand
GEO FORM 304_20210524_LOGS.GPJ_STANTEC001.GDT_5/24/21			Hole terminated at 15.5 feet.						-		Filter Pack

GEO FORM 304 20210524 LOGS.GPJ STANTEC001.GDT 5/24/21

LOCATION: **5770 Industrial Pkwy, San Bernardino, CA** PROJECT NUMBER: **185805145**

DRILLING COMPANY: M&R Drilling

DRILLING EQUIPMENT: 6620DT

WELL / PROBEHOLE / BOREHOLE NO: **SV-6** PAGE 1 OF 1

Stantec

DRILLING: INSTALLATION: STARTED

STARTED **5/24/21**

COMPLETED: **5/24/21** COMPLETED:

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): **NE** BOREHOLE DEPTH (ft): 15.5

STATIC DTW (ft): **NE** WELL DEPTH (ft): ---

DRILLING	METH	0D: [DPT NT: Acetate	WE	ATIC DTW (ft): ELL CASING D GGED BY: MF	IAMETI B	ER (in)		BORE	DEPTH (ft): HOLE DIAMETER (in): 2.2 KED BY: AJ
Time & Depth (feet)	Graphic Log	nscs	Description	Sample	Time Sample ID Method	Measured Recovery (ft.)	Blow Count	PID Reading (ppmv)	Depth (feet)	Borehole Backfill
-		SP	POORLY GRADED SAND AND GRAVEL WITH SILT; fine to coarse-grained; dry; no odor; no staining; minor asphalt and concrete debris POORLY GRADED SAND; SP; 10YR 3/3 dark brown; fine to coarse-grained; moist; no odor; no staining; few gravel; few fines		1258 SV-6-1 6010				-	x2 1/4" Nylaflow Tubing in Hydrated
- 5-		SP	SAME AS ABOVE; 10YR 3/3 dark brown; slightly moist; no odor; no staining; few silt fines; trace to few gravel		1303 SV-6-3			0.0	5-	Granular Bentonite Dry Granula Bentonite 1" Airstone i #3 Sand Filter Pack
-			SAME AS ABOVE ; 10YR 4/4 dark yellowish brown						-	
10-								0.0	10-	1/4" Nylaflov Tubing in Hydrated Granular Bentonite
- - 15—			SAME AS ABOVE ; medium to coarse-grained; few fine sand					0.0	- - 15-	Dry Granula Bentonite
- -			Hole terminated at 15.5 feet.						- -	#3 Sand Filter Pack
									_	

LOCATION: 5770 Industrial Pkwy, San Bernardino, CA

PROJECT NUMBER: **185805145**

DRILLING:

COMPLETED: **5/24/21**

INSTALLATION: STARTED COMPLETED:
DRILLING COMPANY: **M&R Drilling**DRILLING EQUIPMENT: **6620DT**DRILLING METHOD: **DPT**

STARTED 5/24/21

WELL / PROBEHOLE / BOREHOLE NO:

SV-7 PAGE 1 OF 1

NORTHING (ft): EASTING (ft): LATITUDE: LONGITUDE: GROUND ELEV (ft): TOC ELEV (ft):

INITIAL DTW (ft): **NE** BOREHOLE DEPTH (ft): **15.5**

STATIC DTW (ft): **NE** WELL DEPTH (ft): ---

WELL CASING DIAMETER (in): --- BOREHOLE DIAMETER (in): 2.25

Stanted

GEO FORM 304 20210524 LOGS.GPJ STANTEC001.GDT

APPENDIX B

Laboratory Data Sheets

ELAP No.: 1838

CSDLAC No.: 10196 ORELAP No.: CA300003

June 03, 2021

Alicia Jansen Stantec

735 E. Carnegie Drive, Suite 280 San Bernardino, CA 92408

Tel: (909) 335-6116 Fax:(909) 335-6120

Re: ATL Work Order Number: 2101181

Client Reference: 185805145, Dedeaux - SBD

Enclosed are the results for sample(s) received on May 25, 2021 by Advanced Technology Laboratories. The sample(s) are tested for the parameters as indicated on the enclosed chain of custody in accordance with applicable laboratory certifications. The laboratory results contained in this report specifically pertains to the sample(s) submitted.

Thank you for the opportunity to serve the needs of your company. If you have any questions, please feel free to contact me or your Project Manager.

Sincerely,

Amy Leung

Laboratory Director

for ah

The cover letter and the case narrative are an integral part of this analytical report and its absence renders the report invalid. Test results contained within this data package meet the requirements of applicable state-specific certification programs. The report cannot be reproduced without written permission from the client and Advanced Technology Laboratories.

Certificate of Analysis

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino , CA 92408 Reported: 06/03/2021

SUMMARY OF SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-1-15	2101181-03	Soil	5/24/21 8:44	5/25/21 12:08
SV-2-15	2101181-06	Soil	5/24/21 9:38	5/25/21 12:08
SV-3-10	2101181-08	Soil	5/24/21 10:06	5/25/21 12:08
SV-4-10	2101181-11	Soil	5/24/21 10:48	5/25/21 12:08
SB-1-1	2101181-13	Soil	5/24/21 11:14	5/25/21 12:08
SB-2-1	2101181-15	Soil	5/24/21 11:31	5/25/21 12:08
SV-5-1	2101181-17	Soil	5/24/21 12:10	5/25/21 12:08
SV-6-1	2101181-19	Soil	5/24/21 12:58	5/25/21 12:08

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-1-15 Lab ID: 2101181-03

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: Kur

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B1E0501	05/29/2021	05/29/21 00:43	
Surrogate: 4-Bromofluorobenzene	106 %	47.6 - 121.18		B1E0501	05/29/2021	05/29/21 00:43	

Diesel Range Organics by EPA 8015B

Analyst: manager

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	2.1	1.0	1	B1E0475	05/28/2021	06/01/21 13:42	
ORO	4.1	1.0	1	B1E0475	05/28/2021	06/01/21 13:42	
Surrogate: p-Terphenyl	50.3 %	15 - 110		B1E0475	05/28/2021	06/01/21 13:42	

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,1,1-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,1,2,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,1,2-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,1-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,1-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,1-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2,3-Trichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2,3-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2,4-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2,4-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2-Dibromo-3-chloropropane	ND	10	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2-Dibromoethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,3,5-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,3-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,3-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
1,4-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
2,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SV-1-15 Lab ID: 2101181-03

Volatile Organic Compounds by EPA 8260B

	Result	PQL				Date/Time	
Analyte	(ug/kg)	(ug/kg)	Dilution	Batch	Prepared	Analyzed	Notes
2-Chlorotoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
4-Chlorotoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
4-Isopropyltoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Benzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Bromobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Bromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Bromodichloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Bromoform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Bromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Carbon disulfide	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Carbon tetrachloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Chlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Chloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Chloroform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Chloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
cis-1,2-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
cis-1,3-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Di-isopropyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Dibromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Dibromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Dichlorodifluoromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Ethyl Acetate	ND	50	1	B1E0457	05/27/2021	05/27/21 20:41	
Ethyl Ether	ND	50	1	B1E0457	05/27/2021	05/27/21 20:41	
Ethyl tert-butyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Ethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Freon-113	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Hexachlorobutadiene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Isopropylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
m,p-Xylene	ND	10	1	B1E0457	05/27/2021	05/27/21 20:41	
Methylene chloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
MTBE	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
n-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
n-Propylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Naphthalene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
o-Xylene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
sec-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 20:41	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SV-1-15 Lab ID: 2101181-03

Volatile Organic Compounds by EPA 8260B

Analyte	Res (ug/l			Batch	Prepared	Date/Time Analyzed	Notes
Styrene	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
tert-Amyl methyl ether	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
tert-Butanol	N	D 100	1	B1E0457	05/27/2021	05/27/21 20:41	
tert-Butylbenzene	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Tetrachloroethene	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Toluene	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
trans-1,2-Dichloroethene	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
trans-1,3-Dichloropropene	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Trichloroethene	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Trichlorofluoromethane	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Vinyl acetate	N	D 50	1	B1E0457	05/27/2021	05/27/21 20:41	
Vinyl chloride	N	D 5.0	1	B1E0457	05/27/2021	05/27/21 20:41	
Surrogate: 1,2-Dichloroethane-d4	127 %	66 - 2	90	B1E0457	05/27/2021	05/27/21 20:41	
Surrogate: 4-Bromofluorobenzene	102 %	50 - 1	46	B1E0457	05/27/2021	05/27/21 20:41	
Surrogate: Dibromofluoromethane	116 %	77 - 1.	59	B1E0457	05/27/2021	05/27/21 20:41	
Surrogate: Toluene-d8	101 %	81 - 1.	28	B1E0457	05/27/2021	05/27/21 20:41	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-2-15 Lab ID: 2101181-06

Gasoline Range Organics by EPA 8015B (Modified)

- 0 0 t	`	,					
	Result	PQL				Date/Time	
Analyte	(mg/kg)	(mg/kg)	Dilution	Batch	Prepared	Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B1E0501	05/29/2021	05/29/21 01:06	
Surrogate: 4-Bromofluorobenzene	105 %	47.6 - 121.18		B1E0501	05/29/2021	05/29/21 01:06	

Diesel Range Organics by EPA 8015B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	5.8	1.0	1	B1E0475	05/28/2021	06/01/21 13:59	
ORO	6.6	1.0	1	B1E0475	05/28/2021	06/01/21 13:59	
Surrogate: p-Terphenyl	46.4 %	15 - 110		B1E0475	05/28/2021	06/01/21 13:59	

Volatile Organic Compounds by EPA 8260B

Volatile Organic Compounds by	EPA 8260B						Analyst: TM
Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,1,1-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,1,2,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,1,2-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,1-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,1-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,1-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2,3-Trichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2,3-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2,4-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2,4-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2-Dibromo-3-chloropropane	ND	10	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2-Dibromoethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,3,5-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,3-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,3-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
1,4-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
2,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	

Analyst: Kur

Analyst: manager

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-2-15 Lab ID: 2101181-06

Volatile Organic Compounds by EPA 8260B

Analyte	Result	PQL	Dilution	Batch	Prancend	Date/Time Analyzed	Notes
Analyte	(ug/kg)	(ug/kg)	Dilution	Daten	Prepared	Anaiyzed	Notes
2-Chlorotoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
4-Chlorotoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
4-Isopropyltoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Benzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Bromobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Bromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Bromodichloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Bromoform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Bromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Carbon disulfide	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Carbon tetrachloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Chlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Chloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Chloroform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Chloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
cis-1,2-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
cis-1,3-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Di-isopropyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Dibromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Dibromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Dichlorodifluoromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Ethyl Acetate	ND	50	1	B1E0457	05/27/2021	05/27/21 21:07	
Ethyl Ether	ND	50	1	B1E0457	05/27/2021	05/27/21 21:07	
Ethyl tert-butyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Ethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Freon-113	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Hexachlorobutadiene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Isopropylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
m,p-Xylene	ND	10	1	B1E0457	05/27/2021	05/27/21 21:07	
Methylene chloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
MTBE	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
n-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
n-Propylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Naphthalene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
o-Xylene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
sec-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SV-2-15 Lab ID: 2101181-06

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Styrene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
tert-Amyl methyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
tert-Butanol	ND	100	1	B1E0457	05/27/2021	05/27/21 21:07	
tert-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Tetrachloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Toluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
trans-1,2-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
trans-1,3-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Trichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Trichlorofluoromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Vinyl acetate	ND	50	1	B1E0457	05/27/2021	05/27/21 21:07	
Vinyl chloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:07	
Surrogate: 1,2-Dichloroethane-d4	112 %	66 - 200		B1E0457	05/27/2021	05/27/21 21:07	
Surrogate: 4-Bromofluorobenzene	101 %	50 - 146		B1E0457	05/27/2021	05/27/21 21:07	
Surrogate: Dibromofluoromethane	107 %	77 - 159		B1E0457	05/27/2021	05/27/21 21:07	
Surrogate: Toluene-d8	104 %	81 - 128		B1E0457	05/27/2021	05/27/21 21:07	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-3-10 Lab ID: 2101181-08

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: Kur

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B1E0501	05/29/2021	05/29/21 01:29	
Surrogate: 4-Bromofluorobenzene	104 %	47.6 - 121.18		B1E0501	05/29/2021	05/29/21 01:29	

Diesel Range Organics by EPA 8015B

Analyst: manager

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	5.1	1.0	1	B1F0038	06/02/2021	06/02/21 18:17	
ORO	5.1	1.0	1	B1F0038	06/02/2021	06/02/21 18:17	
Surrogate: p-Terphenyl	58.3 %	15 - 110		B1F0038	06/02/2021	06/02/21 18:17	

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,1,1-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,1,2,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,1,2-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,1-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,1-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,1-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2,3-Trichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2,3-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2,4-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2,4-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2-Dibromo-3-chloropropane	ND	10	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2-Dibromoethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,3,5-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,3-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,3-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
1,4-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
2,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SV-3-10 Lab ID: 2101181-08

Volatile Organic Compounds by EPA 8260B

Analyte	Result	PQL	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Analyte	(ug/kg)	(ug/kg)	וועווטוועו	Daich	rrepared	Analyzed	Notes
2-Chlorotoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
4-Chlorotoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
4-Isopropyltoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Benzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Bromobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Bromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Bromodichloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Bromoform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Bromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Carbon disulfide	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Carbon tetrachloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Chlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Chloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Chloroform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Chloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
cis-1,2-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
cis-1,3-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Di-isopropyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Dibromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Dibromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Dichlorodifluoromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Ethyl Acetate	ND	50	1	B1E0457	05/27/2021	05/27/21 21:33	
Ethyl Ether	ND	50	1	B1E0457	05/27/2021	05/27/21 21:33	
Ethyl tert-butyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Ethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Freon-113	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Hexachlorobutadiene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Isopropylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
m,p-Xylene	ND	10	1	B1E0457	05/27/2021	05/27/21 21:33	
Methylene chloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
MTBE	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
n-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
n-Propylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Naphthalene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
o-Xylene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
sec-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SV-3-10 Lab ID: 2101181-08

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Styrene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
tert-Amyl methyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
tert-Butanol	ND	100	1	B1E0457	05/27/2021	05/27/21 21:33	
tert-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Tetrachloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Toluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
trans-1,2-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
trans-1,3-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Trichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Trichlorofluoromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Vinyl acetate	ND	50	1	B1E0457	05/27/2021	05/27/21 21:33	
Vinyl chloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 21:33	
Surrogate: 1,2-Dichloroethane-d4	123 %	66 - 200		B1E0457	05/27/2021	05/27/21 21:33	
Surrogate: 4-Bromofluorobenzene	102 %	50 - 146		B1E0457	05/27/2021	05/27/21 21:33	
Surrogate: Dibromofluoromethane	101 %	77 - 159		B1E0457	05/27/2021	05/27/21 21:33	
Surrogate: Toluene-d8	106 %	81 - 128		B1E0457	05/27/2021	05/27/21 21:33	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-4-10 Lab ID: 2101181-11

Gasoline Range Organics by EPA 8015B (Modified)

Analyst: Kur

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Gasoline Range Organics	ND	1.0	1	B1E0501	05/29/2021	05/29/21 01:52	
Surrogate: 4-Bromofluorobenzene	105 %	47.6 - 121.18		B1E0501	05/29/2021	05/29/21 01:52	

Diesel Range Organics by EPA 8015B

Analyst: manager

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
DRO	ND	1.0	1	B1E0475	05/28/2021	06/01/21 14:35	
ORO	2.8	1.0	1	B1E0475	05/28/2021	06/01/21 14:35	
Surrogate: p-Terphenyl	44.1 %	15 - 110	-	B1E0475	05/28/2021	06/01/21 14:35	

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,1,1-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,1,2,2-Tetrachloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,1,2-Trichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,1-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,1-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,1-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2,3-Trichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2,3-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2,4-Trichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2,4-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2-Dibromo-3-chloropropane	ND	10	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2-Dibromoethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2-Dichloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,3,5-Trimethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,3-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,3-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
1,4-Dichlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
2,2-Dichloropropane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-4-10 Lab ID: 2101181-11

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2-Chlorotoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
4-Chlorotoluene	ND ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
4-Isopropyltoluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Benzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Bromobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Bromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Bromodichloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Bromoform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Bromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Carbon disulfide	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Carbon tetrachloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Chlorobenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Chloroethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Chloroform	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Chloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
cis-1,2-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
cis-1,3-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Di-isopropyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Dibromochloromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Dibromomethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Dichlorodifluoromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Ethyl Acetate	ND	50	1	B1E0457	05/27/2021	05/27/21 22:00	
Ethyl Ether	ND	50	1	B1E0457	05/27/2021	05/27/21 22:00	
Ethyl tert-butyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Ethylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Freon-113	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Hexachlorobutadiene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Isopropylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
m,p-Xylene	ND	10	1	B1E0457	05/27/2021	05/27/21 22:00	
Methylene chloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
MTBE	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
n-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
n-Propylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Naphthalene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
o-Xylene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
sec-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	

Certificate of Analysis

Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SV-4-10 Lab ID: 2101181-11

Volatile Organic Compounds by EPA 8260B

Analyte	Result (ug/kg)	PQL (ug/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Styrene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
tert-Amyl methyl ether	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
tert-Butanol	ND	100	1	B1E0457	05/27/2021	05/27/21 22:00	
tert-Butylbenzene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Tetrachloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Toluene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
trans-1,2-Dichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
trans-1,3-Dichloropropene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Trichloroethene	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Trichlorofluoromethane	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Vinyl acetate	ND	50	1	B1E0457	05/27/2021	05/27/21 22:00	
Vinyl chloride	ND	5.0	1	B1E0457	05/27/2021	05/27/21 22:00	
Surrogate: 1,2-Dichloroethane-d4	140 %	66 - 200		B1E0457	05/27/2021	05/27/21 22:00	
Surrogate: 4-Bromofluorobenzene	97.8 %	50 - 146		B1E0457	05/27/2021	05/27/21 22:00	
Surrogate: Dibromofluoromethane	104 %	77 - 159		B1E0457	05/27/2021	05/27/21 22:00	
Surrogate: Toluene-d8	104 %	81 - 128		B1E0457	05/27/2021	05/27/21 22:00	

Certificate of Analysis

Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SB-1-1 Lab ID: 2101181-13

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	ND	1.0	1	B1E0443	05/26/2021	05/27/21 11:11	
Lead	2.5	1.0	1	B1E0443	05/26/2021	05/27/21 11:11	

Certificate of Analysis

Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Client Sample ID: SB-2-1 Lab ID: 2101181-15

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	ND	1.0	1	B1E0443	05/26/2021	05/27/21 11:14	
Lead	13	1.0	1	B1E0443	05/26/2021	05/27/21 11:14	

Certificate of Analysis

Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-5-1 Lab ID: 2101181-17

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	ND	1.0	1	B1E0443	05/26/2021	05/27/21 11:15	
Lead	11	1.0	1	B1E0443	05/26/2021	05/27/21 11:15	

Certificate of Analysis

Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Client Sample ID: SV-6-1 Lab ID: 2101181-19

Total Metals by ICP-AES EPA 6010B

Analyte	Result (mg/kg)	PQL (mg/kg)	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
Arsenic	ND	1.0	1	B1E0443	05/26/2021	05/27/21 11:17	
Lead	4.3	1.0	1	B1E0443	05/26/2021	05/27/21 11:17	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen San Bernardino, CA 92408 Reported: 06/03/2021

QUALITY CONTROL SECTION

Total Metals by ICP-AES EPA 6010B - Quality Control

Analyte	Result (mg/kg)	PQL (mg/kg)	MDL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Batch B1E0443 - EPA 3050B_S										
Blank (B1E0443-BLK1)					Prepared	: 5/26/2021 A	analyzed: 5/26/2	2021		
Arsenic	ND	1.0	0.12							
Lead	ND	1.0	0.18							
LCS (B1E0443-BS1)					Prepared	: 5/26/2021 A	analyzed: 5/26/2	2021		
Arsenic	26.2514	1.0	0.12	25.0000		105	80 - 120			
Lead	26.4806	1.0	0.18	25.0000		106	80 - 120			
Matrix Spike (B1E0443-MS1)		So	ource: 21011	83-01	Prepared	: 5/26/2021 A	analyzed: 5/26/2	2021		
Arsenic	28.6008	1.0	0.12	25.0000	3.44782	101	55 - 117			
Lead	27.5372	1.0	0.18	25.0000	3.48412	96.2	26 - 161			
Matrix Spike Dup (B1E0443-MSD1)		So	ource: 21011	83-01	Prepared	: 5/26/2021 A	analyzed: 5/26/2	2021		
Arsenic	27.5171	1.0	0.12	25.0000	3.44782	96.3	55 - 117	3.86	20	
Lead	26.6843	1.0	0.18	25.0000	3.48412	92.8	26 - 161	3.15	20	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Gasoline Range Organics by EPA 8015B (Modified) - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0501 - GCVOA_S										
Blank (B1E0501-BLK1)					Prepared	d: 5/28/2021	Analyzed: 5/28/2	021		
Gasoline Range Organics	ND	1.0	0.20							
Surrogate: 4-Bromofluorobenzene	0.8020			0.800000		100	47.6 - 121.18			
LCS (B1E0501-BS1)					Prepared	1: 5/28/2021	Analyzed: 5/28/2	021		
Gasoline Range Organics	5.85500	1.0	0.20	5.00000		117	58.69 - 124.04			
Surrogate: 4-Bromofluorobenzene	0.9335			0.800000		117	47.6 - 121.18			
LCS Dup (B1E0501-BSD1)					Prepared	1: 5/28/2021	Analyzed: 5/28/2	021		
Gasoline Range Organics	5.15300	1.0	0.20	5.00000		103	58.69 - 124.04	12.8	20	
Surrogate: 4-Bromofluorobenzene	0.8836			0.800000		110	47.6 - 121.18			
Matrix Spike (B1E0501-MS1)		S	ource: 21012	205-02	Prepared	d: 5/28/2021	Analyzed: 5/28/2	021		
Gasoline Range Organics	5.38400	1.0	0.20	5.00000	ND	108	37.92 - 128.32			
Surrogate: 4-Bromofluorobenzene	0.9534			0.800000		119	47.6 - 121.18			
Matrix Spike Dup (B1E0501-MSD1))	S	ource: 21012	205-02	Prepared	d: 5/28/2021	Analyzed: 5/28/2	021		
Gasoline Range Organics	4.79100	1.0	0.20	5.00000	ND	95.8	37.92 - 128.32	11.7	20	
Surrogate: 4-Bromofluorobenzene	0.9319			0.800000		116	47.6 - 121.18	•	•	•

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0475 - GCSEMI_DRO	O_LL_S									
Blank (B1E0475-BLK1)					Prepared	: 5/28/2021	Analyzed: 6/1/2	021		
DRO	ND	1.0	0.53							
ORO	ND	1.0	0.53							
Surrogate: p-Terphenyl	1.044			2.66667		39.2	15 - 110			
Blank (B1E0475-BLK2)					Prepared	: 5/28/2021	Analyzed: 6/2/2	021		
DRO	ND	1.0	0.53							
ORO	ND	1.0	0.53							
Surrogate: p-Terphenyl	1.328			2.66667		49.8	15 - 110			
LCS (B1E0475-BS1)					Prepared	: 5/28/2021	Analyzed: 6/1/2	021		
DRO	13.1670	1.0	0.53	33.3333		39.5	30 - 116			
Surrogate: p-Terphenyl	1.293			2.66667		48.5	15 - 110			
LCS (B1E0475-BS2)					Prepared	: 5/28/2021	Analyzed: 6/2/2	021		
DRO	14.4953	1.0	0.53	33.3333		43.5	30 - 116			
Surrogate: p-Terphenyl	1.632			2.66667		61.2	15 - 110			
Matrix Spike (B1E0475-MS1)		S	ource: 21011	181-03	Prepared	: 5/28/2021	Analyzed: 6/1/2	021		
DRO	28.8327	1.0	0.53	33.3333	2.13967	80.1	0 - 120			
Surrogate: p-Terphenyl	1.820			2.66667		68.2	15 - 110			_
Matrix Spike Dup (B1E0475-MSD1	1)	s	ource: 21011	181-03	Prepared	: 5/28/2021	Analyzed: 6/1/2	021		
DRO	24.1593	1.0	0.53	33.3333	2.13967	66.1	0 - 120	17.6	20	
Surrogate: p-Terphenyl	1.478			2.66667	_	55.4	15 - 110			_

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Diesel Range Organics by EPA 8015B - Quality Control

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1F0038 - GCSEMI DRO	LL S									
Blank (B1F0038-BLK1)					Prepared	l: 6/2/2021 A	nalyzed: 6/2/20	21		
DRO	ND	1.0	0.53							
ORO	ND	1.0	0.53							
Surrogate: p-Terphenyl	1.583			2.66667		59.4	15 - 110			
LCS (B1F0038-BS1)					Prepared	l: 6/2/2021 A	nalyzed: 6/2/20	21		
DRO	13.1133	1.0	0.53	33.3333		39.3	30 - 116			
Surrogate: p-Terphenyl	1.074			2.66667		40.3	15 - 110			
Matrix Spike (B1F0038-MS1)		\$	Source: 21011	81-08	Prepared	l: 6/2/2021 A	nalyzed: 6/2/20	21		
DRO	24.7910	1.0	0.53	33.3333	5.06900	59.2	0 - 120			
Surrogate: p-Terphenyl	1.577			2.66667		59.1	15 - 110			
Matrix Spike Dup (B1F0038-MSD1)		5	Source: 21011	81-08	Prepared	l: 6/2/2021 A	nalyzed: 6/2/20	21		
DRO	14.3500	1.0	0.53	33.3333	5.06900	27.8	0 - 120	53.4	20	R
Surrogate: p-Terphenyl	1.140			2.66667		42.7	15 - 110			

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0457 - MSVOA_S										
Blank (B1E0457-BLK1)					Prepared	d: 5/27/2021 A	Analyzed: 5/27/	2021		
1,1,1,2-Tetrachloroethane	ND	5.0	0.52							
1,1,1-Trichloroethane	ND	5.0	0.26							
1,1,2,2-Tetrachloroethane	ND	5.0	0.21							
1,1,2-Trichloroethane	ND	5.0	0.40							
1,1-Dichloroethane	ND	5.0	1.4							
1,1-Dichloroethene	ND	5.0	1.9							
1,1-Dichloropropene	ND	5.0	0.54							
1,2,3-Trichloropropane	ND	5.0	0.40							
1,2,3-Trichlorobenzene	ND	5.0	0.83							
1,2,4-Trichlorobenzene	ND	5.0	0.80							
1,2,4-Trimethylbenzene	ND	5.0	0.91							
1,2-Dibromo-3-chloropropane	ND	10	1.1							
1,2-Dibromoethane	ND	5.0	0.40							
1,2-Dichlorobenzene	ND	5.0	0.21							
1,2-Dichloroethane	ND	5.0	0.50							
1,2-Dichloropropane	ND	5.0	0.46							
1,3,5-Trimethylbenzene	ND	5.0	0.70							
1,3-Dichlorobenzene	ND	5.0	0.36							
1,3-Dichloropropane	ND	5.0	0.49							
1,4-Dichlorobenzene	ND	5.0	0.27							
2,2-Dichloropropane	ND	5.0	0.28							
2-Chlorotoluene	ND	5.0	0.53							
4-Chlorotoluene	ND	5.0	0.40							
4-Isopropyltoluene	ND	5.0	0.81							
Benzene	ND	5.0	0.36							
Bromobenzene	ND	5.0	0.62							
Bromochloromethane	ND	5.0	0.30							
Bromodichloromethane	ND	5.0	0.52							
Bromoform	ND	5.0	1.4							
Bromomethane	ND	5.0	2.5							
Carbon disulfide	ND	5.0	0.94							
Carbon tetrachloride	ND	5.0	0.73							
Chlorobenzene	ND	5.0	0.42							
Chloroethane	ND	5.0	1.5							
Chloroform	ND	5.0	0.24							
Chloromethane	ND	5.0	1.1							
cis-1,2-Dichloroethene	ND	5.0	0.20							
cis-1,3-Dichloropropene	ND	5.0	0.39							
Di-isopropyl ether	ND	5.0	1.9							
Dibromochloromethane	ND	5.0	0.81							

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino , CA 92408 Reported: 06/03/2021

	Result	PQL	MDL	Spike	Source	0/ 5	% Rec	nee	RPD	N
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0457 - MSVOA_S (coi	ntinued)									
Blank (B1E0457-BLK1) - Continued					Prepared	d: 5/27/2021 A	Analyzed: 5/27/	2021		
Dibromomethane	ND	5.0	0.23		-					
Dichlorodifluoromethane	ND	5.0	0.14							
Ethyl Acetate	ND	50	7.0							
Ethyl Ether	ND	50	17							
Ethyl tert-butyl ether	ND	5.0	0.85							
Ethylbenzene	ND	5.0	0.43							
Freon-113	ND	5.0	1.3							
Hexachlorobutadiene	ND	5.0	0.40							
sopropylbenzene	ND	5.0	0.79							
n,p-Xylene	ND	10	0.98							
Methylene chloride	ND	5.0	2.2							
MTBE	ND	5.0	0.81							
n-Butylbenzene	ND	5.0	1.2							
n-Propylbenzene	ND	5.0	0.78							
Naphthalene	ND	5.0	1.1							
o-Xylene	ND	5.0	0.67							
sec-Butylbenzene	ND	5.0	0.63							
Styrene	ND	5.0	0.45							
ert-Amyl methyl ether	ND	5.0	1.1							
ert-Butanol	ND	100	11							
ert-Butylbenzene	ND	5.0	0.80							
Tetrachloroethene	ND	5.0	0.31							
Гoluene	ND	5.0	0.27							
rans-1,2-Dichloroethene	ND	5.0	0.56							
rans-1,3-Dichloropropene	ND	5.0	0.59							
Trichloroethene	ND	5.0	0.32							
Trichlorofluoromethane	ND	5.0	1.0							
Vinyl acetate	ND	50	6.0							
Vinyl chloride	ND	5.0	0.92							
Surrogate: 1,2-Dichloroethane-d4	53.58			50.0000		107	66 - 200			
Surrogate: 4-Bromofluorobenzene	49.68			50.0000		99.4	50 - 146			
Surrogate: Dibromofluoromethan	51.19			50.0000		102	77 - 159			
Surrogate: Toluene-d8	50.38			50.0000		101	81 - 128			
LCS (B1E0457-BS1)					Prepared	d: 5/27/2021 A	Analyzed: 5/27/	2021		
1,1,1,2-Tetrachloroethane	54.2900	5.0	0.52	50.0000		109	84 - 123			
1,1,1-Trichloroethane	51.3400	5.0	0.26	50.0000		103	78 - 133			
1,1,2,2-Tetrachloroethane	52.0100	5.0	0.21	50.0000		104	63 - 127			
1,1,2-Trichloroethane	54.7100	5.0	0.40	50.0000		109	80 - 125			

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
D. J. DADOJA P.										
Batch B1E0457 - MSVOA_S (co	ntinued)									
LCS (B1E0457-BS1) - Continued					Prepared	d: 5/27/2021 A	Analyzed: 5/27/	2021		
1,1-Dichloroethene	55.6800	5.0	1.9	50.0000		111	69 - 138			
1,1-Dichloropropene	48.0700	5.0	0.54	50.0000		96.1	80 - 133			
1,2,3-Trichloropropane	51.1600	5.0	0.40	50.0000		102	74 - 123			
1,2,3-Trichlorobenzene	47.6400	5.0	0.83	50.0000		95.3	79 - 133			
1,2,4-Trichlorobenzene	47.3400	5.0	0.80	50.0000		94.7	73 - 131			
1,2,4-Trimethylbenzene	50.7500	5.0	0.91	50.0000		102	86 - 137			
1,2-Dibromo-3-chloropropane	44.1000	10	1.1	50.0000		88.2	62 - 127			
1,2-Dibromoethane	52.7600	5.0	0.40	50.0000		106	83 - 126			
1,2-Dichlorobenzene	48.4700	5.0	0.21	50.0000		96.9	83 - 123			
1,2-Dichloroethane	52.0600	5.0	0.50	50.0000		104	76 - 128			
1,2-Dichloropropane	49.5800	5.0	0.46	50.0000		99.2	77 - 121			
1,3,5-Trimethylbenzene	51.7100	5.0	0.70	50.0000		103	84 - 135			
1,3-Dichlorobenzene	50.0700	5.0	0.36	50.0000		100	81 - 126			
1,3-Dichloropropane	53.4400	5.0	0.49	50.0000		107	80 - 118			
1,4-Dichlorobenzene	50.9600	5.0	0.27	50.0000		102	80 - 124			
2,2-Dichloropropane	52.0800	5.0	0.28	50.0000		104	72 - 135			
2-Chlorotoluene	52.3500	5.0	0.53	50.0000		105	81 - 127			
4-Chlorotoluene	50.3500	5.0	0.40	50.0000		101	83 - 127			
4-Isopropyltoluene	52.6800	5.0	0.81	50.0000		105	82 - 143			
Benzene	50.3900	5.0	0.36	50.0000		101	84 - 123			
Bromobenzene	48.0900	5.0	0.62	50.0000		96.2	80 - 122			
Bromochloromethane	48.4300	5.0	0.30	50.0000		96.9	83 - 127			
Bromodichloromethane	54.1400	5.0	0.52	50.0000		108	82 - 123			
Bromoform	51.1300	5.0	1.4	50.0000		102	80 - 132			
Bromomethane	46.4600	5.0	2.5	50.0000		92.9	67 - 176			
Carbon disulfide	48.6300	5.0	0.94	50.0000		97.3	75 - 138			
Carbon tetrachloride	51.7100	5.0	0.73	50.0000		103	76 - 131			
Chlorobenzene	52.5200	5.0	0.42	50.0000		105	84 - 119			
Chloroethane	58.3200	5.0	1.5	50.0000		117	56 - 170			
Chloroform	52.9700	5.0	0.24	50.0000		106	78 - 129			
Chloromethane	51.3400	5.0	1.1	50.0000		103	63 - 141			
cis-1,2-Dichloroethene	53.2500	5.0	0.20	50.0000		106	83 - 125			
cis-1,3-Dichloropropene	52.0500	5.0	0.39	50.0000		104	76 - 129			
Di-isopropyl ether	54.3700	5.0	1.9	50.0000		109	73 - 132			
Dibromochloromethane	51.1200	5.0	0.81	50.0000		102	81 - 120			
Dibromomethane	47.6700	5.0	0.23	50.0000		95.3	79 - 124			
Dichlorodifluoromethane	41.8000	5.0	0.14	50.0000		83.6	18 - 199			
Ethyl Acetate	538.990	50	7.0	500.000		108	76 - 138			
Ethyl Ether	542.190	50	17	500.000		108	74 - 128			
Ethyl tert-butyl ether	55.8300	5.0	0.85	50.0000		112	50 - 175			
Lary 1 cort-outy 1 caret	55.0500	5.0	0.05	50.0000		114	50 - 175			

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0457 - MSVOA_S (cor	ntinued)									
LCS (B1E0457-BS1) - Continued					Prepared	d: 5/27/2021 A	Analyzed: 5/27/	2021		
Ethylbenzene	53.8500	5.0	0.43	50.0000		108	86 - 130			
Freon-113	51.2600	5.0	1.3	50.0000		103	66 - 132			
Hexachlorobutadiene	47.4300	5.0	0.40	50.0000		94.9	64 - 135			
sopropylbenzene	51.3000	5.0	0.79	50.0000		103	80 - 133			
n,p-Xylene	104.920	10	0.98	100.000		105	89 - 133			
Methylene chloride	50.8500	5.0	2.2	50.0000		102	72 - 143			
MTBE	51.9200	5.0	0.81	50.0000		104	73 - 136			
n-Butylbenzene	51.1700	5.0	1.2	50.0000		102	76 - 144			
n-Propylbenzene	51.9300	5.0	0.78	50.0000		104	81 - 136			
Vaphthalene	47.1900	5.0	1.1	50.0000		94.4	64 - 128			
-Xylene	54.6300	5.0	0.67	50.0000		109	82 - 134			
ec-Butylbenzene	52.9700	5.0	0.63	50.0000		106	81 - 138			
Styrene	54.6500	5.0	0.45	50.0000		109	79 - 152			
ert-Amyl methyl ether	54.1200	5.0	1.1	50.0000		108	48 - 166			
ert-Butanol	265.440	100	11	250.000		106	48 - 148			
ert-Butylbenzene	51.0500	5.0	0.80	50.0000		102	81 - 135			
etrachloroethene	53.0800	5.0	0.31	50.0000		106	75 - 127			
oluene	54.1100	5.0	0.27	50.0000		108	88 - 130			
rans-1,2-Dichloroethene	58.3400	5.0	0.56	50.0000		117	79 - 127			
rans-1,3-Dichloropropene	54.1300	5.0	0.59	50.0000		108	80 - 130			
richloroethene	48.6400	5.0	0.32	50.0000		97.3	83 - 126			
richlorofluoromethane	55.0400	5.0	1.0	50.0000		110	62 - 143			
/inyl acetate	572.050	50	6.0	500.000		114	69 - 150			
/inyl chloride	52.0200	5.0	0.92	50.0000		104	69 - 140			
Surrogate: 1,2-Dichloroethane-d4	47.83			50.0000		95.7	66 - 200			
Surrogate: 4-Bromofluorobenzene	50.28			50.0000		101	50 - 146			
Surrogate: Dibromofluoromethan	51.76			50.0000		104	77 - 159			
Surrogate: Toluene-d8	47.63			50.0000		95.3	81 - 128			
LCS Dup (B1E0457-BSD1)					Prepared	d: 5/27/2021 A	Analyzed: 5/27/	2021		
,1,1,2-Tetrachloroethane	52.1800	5.0	0.52	50.0000		104	84 - 123	3.96	20	
,1,1-Trichloroethane	49.3700	5.0	0.26	50.0000		98.7	78 - 133	3.91	20	
,1,2,2-Tetrachloroethane	49.4200	5.0	0.21	50.0000		98.8	63 - 127	5.11	20	
,1,2-Trichloroethane	50.8700	5.0	0.40	50.0000		102	80 - 125	7.27	20	
,1-Dichloroethane	53.8500	5.0	1.4	50.0000		108	77 - 128	3.79	20	
,1-Dichloroethene	49.8200	5.0	1.9	50.0000		99.6	69 - 138	11.1	20	
,1-Dichloropropene	48.4500	5.0	0.54	50.0000		96.9	80 - 133	0.787	20	
,2,3-Trichloropropane	49.0500	5.0	0.40	50.0000		98.1	74 - 123	4.21	20	
,2,3-Trichlorobenzene	46.6300	5.0	0.83	50.0000		93.3	79 - 133	2.14	20	
,2,4-Trichlorobenzene	45.7900	5.0	0.80	50.0000		91.6	73 - 131	3.33	20	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0457 - MSVOA_S (o	continued)									
LCS Dup (B1E0457-BSD1) - Cont	tinued				Prepared	d: 5/27/2021	Analyzed: 5/27/	2021		
,2,4-Trimethylbenzene	46.8300	5.0	0.91	50.0000		93.7	86 - 137	8.03	20	
,2-Dibromo-3-chloropropane	50.4600	10	1.1	50.0000		101	62 - 127	13.5	20	
,2-Dibromoethane	51.4500	5.0	0.40	50.0000		103	83 - 126	2.51	20	
,2-Dichlorobenzene	45.0500	5.0	0.21	50.0000		90.1	83 - 123	7.31	20	
,2-Dichloroethane	51.7500	5.0	0.50	50.0000		104	76 - 128	0.597	20	
,2-Dichloropropane	53.0100	5.0	0.46	50.0000		106	77 - 121	6.69	20	
,3,5-Trimethylbenzene	47.0600	5.0	0.70	50.0000		94.1	84 - 135	9.42	20	
,3-Dichlorobenzene	49.3900	5.0	0.36	50.0000		98.8	81 - 126	1.37	20	
,3-Dichloropropane	49.9800	5.0	0.49	50.0000		100	80 - 118	6.69	20	
,4-Dichlorobenzene	45.6300	5.0	0.27	50.0000		91.3	80 - 124	11.0	20	
,2-Dichloropropane	48.2000	5.0	0.28	50.0000		96.4	72 - 135	7.74	20	
-Chlorotoluene	47.0200	5.0	0.53	50.0000		94.0	81 - 127	10.7	20	
-Chlorotoluene	47.0700	5.0	0.40	50.0000		94.1	83 - 127	6.73	20	
-Isopropyltoluene	48.6600	5.0	0.81	50.0000		97.3	82 - 143	7.93	20	
Benzene	51.3900	5.0	0.36	50.0000		103	84 - 123	1.97	20	
romobenzene	45.6800	5.0	0.62	50.0000		91.4	80 - 122	5.14	20	
romochloromethane	50.1100	5.0	0.30	50.0000		100	83 - 127	3.41	20	
romodichloromethane	54.5100	5.0	0.52	50.0000		109	82 - 123	0.681	20	
romoform	45.1100	5.0	1.4	50.0000		90.2	80 - 132	12.5	20	
Fromomethane	49.6100	5.0	2.5	50.0000		99.2	67 - 176	6.56	20	
Carbon disulfide	51.6400	5.0	0.94	50.0000		103	75 - 138	6.00	20	
Carbon tetrachloride	50.3000	5.0	0.73	50.0000		101	76 - 131	2.76	20	
Chlorobenzene	48.3100	5.0	0.42	50.0000		96.6	84 - 119	8.35	20	
Chloroethane	57.7100	5.0	1.5	50.0000		115	56 - 170	1.05	20	
Chloroform	52.9400	5.0	0.24	50.0000		106	78 - 129	0.0567	20	
Chloromethane	51.4200	5.0	1.1	50.0000		103	63 - 141	0.156	20	
is-1,2-Dichloroethene	54.9800	5.0	0.20	50.0000		110	83 - 125	3.20	20	
is-1,3-Dichloropropene	52.9900	5.0	0.39	50.0000		106	76 - 129	1.79	20	
Di-isopropyl ether	53.0000	5.0	1.9	50.0000		106	73 - 132	2.55	20	
Dibromochloromethane	48.4900	5.0	0.81	50.0000		97.0	81 - 120	5.28	20	
Dibromomethane	48.8600	5.0	0.23	50.0000		97.7	79 - 124	2.47	20	
Dichlorodifluoromethane	41.3300	5.0	0.14	50.0000		82.7	18 - 199	1.13	20	
thyl Acetate	524.870	50	7.0	500.000		105	76 - 138	2.65	20	
thyl Ether	537.550	50	17	500.000		108	74 - 128	0.859	20	
thyl tert-butyl ether	52.3300	5.0	0.85	50.0000		105	50 - 175	6.47	20	
thylbenzene	50.3500	5.0	0.43	50.0000		101	86 - 130	6.72	20	
reon-113	50.1500	5.0	1.3	50.0000		100	66 - 132	2.19	20	
lexachlorobutadiene	50.5000	5.0	0.40	50.0000		101	64 - 135	6.27	20	
opropylbenzene	47.7800	5.0	0.79	50.0000		95.6	80 - 133	7.11	20	
ı,p-Xylene	100.700	10	0.79	100.000		101	89 - 133	4.10	20	

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0457 - MSVOA_S (cor	ntinued)									
LCS Dup (B1E0457-BSD1) - Contin	ued				Prepare	d: 5/27/2021	Analyzed: 5/27/	2021		
Methylene chloride	47.7300	5.0	2.2	50.0000		95.5	72 - 143	6.33	20	
MTBE	50.5000	5.0	0.81	50.0000		101	73 - 136	2.77	20	
n-Butylbenzene	48.9900	5.0	1.2	50.0000		98.0	76 - 144	4.35	20	
n-Propylbenzene	47.9800	5.0	0.78	50.0000		96.0	81 - 136	7.91	20	
Naphthalene	47.3500	5.0	1.1	50.0000		94.7	64 - 128	0.338	20	
o-Xylene	49.9400	5.0	0.67	50.0000		99.9	82 - 134	8.97	20	
sec-Butylbenzene	48.2300	5.0	0.63	50.0000		96.5	81 - 138	9.37	20	
Styrene	49.7400	5.0	0.45	50.0000		99.5	79 - 152	9.41	20	
tert-Amyl methyl ether	51.7800	5.0	1.1	50.0000		104	48 - 166	4.42	20	
tert-Butanol	258.950	100	11	250.000		104	48 - 148	2.48	20	
tert-Butylbenzene	45.7900	5.0	0.80	50.0000		91.6	81 - 135	10.9	20	
Tetrachloroethene	48.6000	5.0	0.31	50.0000		97.2	75 - 127	8.81	20	
Toluene	53.1500	5.0	0.27	50.0000		106	88 - 130	1.79	20	
trans-1,2-Dichloroethene	55.8100	5.0	0.56	50.0000		112	79 - 127	4.43	20	
trans-1,3-Dichloropropene	54.3100	5.0	0.59	50.0000		109	80 - 130	0.332	20	
Trichloroethene	49.6600	5.0	0.32	50.0000		99.3	83 - 126	2.08	20	
Trichlorofluoromethane	56.6800	5.0	1.0	50.0000		113	62 - 143	2.94	20	
Vinyl acetate	549.830	50	6.0	500.000		110	69 - 150	3.96	20	
Vinyl chloride	52.6800	5.0	0.92	50.0000		105	69 - 140	1.26	20	
Surrogate: 1,2-Dichloroethane-d4	43.01			50.0000		86.0	66 - 200			
Surrogate: 4-Bromofluorobenzene	49.85			50.0000		99.7	50 - 146			
Surrogate: Dibromofluoromethan	53.48			50.0000		107	77 - 159			
Surrogate: Toluene-d8	53.06			50.0000		106	81 - 128			
Matrix Spike (B1E0457-MS1)		5	Source: 2101	182-01	Prepare	d: 5/27/2021 A	Analyzed: 5/27/	2021		
1,1,1,2-Tetrachloroethane	45.6300	5.0	0.52	50.0000	ND	91.3	50 - 126			
1,1,1-Trichloroethane	51.0300	5.0	0.26	50.0000	ND	102	56 - 144			
1,1,2,2-Tetrachloroethane	47.8800	5.0	0.21	50.0000	ND	95.8	20 - 153			
1,1,2-Trichloroethane	50.3800	5.0	0.40	50.0000	ND	101	0 - 421			
1,1-Dichloroethane	54.3000	5.0	1.4	50.0000	ND	109	58 - 131			
1,1-Dichloroethene	51.4100	5.0	1.9	50.0000	ND	103	60 - 143			
1,1-Dichloropropene	42.3200	5.0	0.54	50.0000	ND	84.6	57 - 144			
1,2,3-Trichloropropane	47.9400	5.0	0.40	50.0000	ND	95.9	52 - 121			
1,2,3-Trichlorobenzene	41.5600	5.0	0.83	50.0000	ND	83.1	0 - 153			
1,2,4-Trichlorobenzene	44.1400	5.0	0.80	50.0000	ND	88.3	0 - 146			
1,2,4-Trimethylbenzene	44.3400	5.0	0.91	50.0000	ND	88.7	26 - 155			
1,2-Dibromo-3-chloropropane	39.9600	10	1.1	50.0000	ND	79.9	36 - 125			
1,2-Dibromoethane	49.4200	5.0	0.40	50.0000	ND	98.8	56 - 127			
1,2-Dichlorobenzene	45.6700	5.0	0.21	50.0000	ND	91.3	26 - 136			
1,2-Dichloroethane	48.2800	5.0	0.50	50.0000	ND	96.6	60 - 118			

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

	Result	PQL	MDL	Spike	Source		% Rec		RPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B1E0457 - MSVOA_S (continued)

Matrix Spike (B1E0457-MS1) - Continued ,2-Dichloropropane 50.9300			Source: 2101	182-01	Prepared	1: 5/27/2021	Analyzed: 5/27/2021
1,2-Dichloropropane	50.9300	5.0	0.46	50.0000	ND	102	52 - 124
1,3,5-Trimethylbenzene	44.4900	5.0	0.70	50.0000	ND	89.0	31 - 152
1,3-Dichlorobenzene	44.0500	5.0	0.36	50.0000	ND	88.1	26 - 140
1,3-Dichloropropane	46.0000	5.0	0.49	50.0000	ND	92.0	56 - 118
1,4-Dichlorobenzene	45.7700	5.0	0.27	50.0000	ND	91.5	27 - 136
2,2-Dichloropropane	53.3800	5.0	0.28	50.0000	ND	107	50 - 146
2-Chlorotoluene	44.9700	5.0	0.53	50.0000	ND	89.9	28 - 149
4-Chlorotoluene	44.1700	5.0	0.40	50.0000	ND	88.3	35 - 142
4-Isopropyltoluene	46.1900	5.0	0.81	50.0000	ND	92.4	12 - 175
Benzene	46.8000	5.0	0.36	50.0000	ND	93.6	61 - 127
Bromobenzene	45.5700	5.0	0.62	50.0000	ND	91.1	40 - 129
Bromochloromethane	51.0600	5.0	0.30	50.0000	ND	102	57 - 135
Bromodichloromethane	48.1400	5.0	0.52	50.0000	ND	96.3	58 - 119
Bromoform	47.6600	5.0	1.4	50.0000	ND	95.3	48 - 130
Bromomethane	49.0900	5.0	2.5	50.0000	ND	98.2	40 - 183
Carbon disulfide	51.4600	5.0	0.94	50.0000	ND	103	49 - 153
Carbon tetrachloride	49.1100	5.0	0.73	50.0000	ND	98.2	49 - 146
Chlorobenzene	46.5000	5.0	0.42	50.0000	ND	93.0	46 - 128
Chloroethane	65.0700	5.0	1.5	50.0000	ND	130	37 - 178
Chloroform	51.0800	5.0	0.24	50.0000	ND	102	59 - 129
Chloromethane	54.5900	5.0	1.1	50.0000	ND	109	31 - 168
cis-1,2-Dichloroethene	54.8100	5.0	0.20	50.0000	ND	110	52 - 137
cis-1,3-Dichloropropene	49.1100	5.0	0.39	50.0000	ND	98.2	45 - 130
Di-isopropyl ether	56.1100	5.0	1.9	50.0000	ND	112	55 - 132
Dibromochloromethane	44.7800	5.0	0.81	50.0000	ND	89.6	56 - 117
Dibromomethane	46.8400	5.0	0.23	50.0000	ND	93.7	62 - 116
Dichlorodifluoromethane	43.2800	5.0	0.14	50.0000	ND	86.6	0 - 266
Ethyl Acetate	574.770	50	7.0	500.000	ND	115	16 - 156
Ethyl Ether	583.330	50	17	500.000	ND	117	58 - 127
Ethyl tert-butyl ether	55.4800	5.0	0.85	50.0000	ND	111	23 - 181
Ethylbenzene	46.1900	5.0	0.43	50.0000	ND	92.4	43 - 144
Freon-113	50.4000	5.0	1.3	50.0000	ND	101	45 - 148
Hexachlorobutadiene	42.0400	5.0	0.40	50.0000	ND	84.1	0 - 149
Isopropylbenzene	44.8800	5.0	0.79	50.0000	ND	89.8	38 - 148
m,p-Xylene	91.1200	10	0.98	100.000	ND	91.1	43 - 146
Methylene chloride	51.5500	5.0	2.2	50.0000	ND	103	51 - 139
MTBE	54.9800	5.0	0.81	50.0000	ND	110	41 - 152
n-Butylbenzene	43.7500	5.0	1.2	50.0000	ND	87.5	11 - 163
n-Propylbenzene	45.4300	5.0	0.78	50.0000	ND	90.9	31 - 154
Naphthalene	44.4400	5.0	1.1	50.0000	ND	88.9	0 - 266

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

PQL

MDL

Result

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

Spike

Source

	Resuit	PQL	MDL	Spike	Source		70 Kec		KPD	
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
Batch B1E0457 - MSVOA_S (co	ntinued)									
Matrix Spike (B1E0457-MS1) - Con	tinued	Se	ource: 21011	82-01	Prepare	d: 5/27/2021 A	Analyzed: 5/27/	2021		
-Xylene	45.7800	5.0	0.67	50.0000	ND	91.6	40 - 142			
ec-Butylbenzene	43.5200	5.0	0.63	50.0000	ND	87.0	20 - 161			
tyrene	46.3100	5.0	0.45	50.0000	ND	92.6	31 - 157			
ert-Amyl methyl ether	56.7000	5.0	1.1	50.0000	ND	113	20 - 179			
ert-Butanol	280.890	100	11	250.000	ND	112	6 - 173			
ert-Butylbenzene	44.5000	5.0	0.80	50.0000	ND	89.0	28 - 155			
etrachloroethene	47.3100	5.0	0.31	50.0000	ND	94.6	39 - 144			
oluene	46.5400	5.0	0.27	50.0000	ND	93.1	10 - 179			
rans-1,2-Dichloroethene	54.3000	5.0	0.56	50.0000	ND	109	60 - 135			
rans-1,3-Dichloropropene	48.9400	5.0	0.59	50.0000	ND	97.9	53 - 131			
richloroethene	45.6000	5.0	0.32	50.0000	ND	91.2	54 - 135			
richlorofluoromethane	55.7200	5.0	1.0	50.0000	ND	111	35 - 165			
inyl acetate	463.040	50	6.0	500.000	ND	92.6	0 - 180			
inyl chloride	54.0500	5.0	0.92	50.0000	ND	108	44 - 165			
Surrogate: 1,2-Dichloroethane-d4	60.64			50.0000		121	66 - 200			
Surrogate: 4-Bromofluorobenzene	50.36			50.0000		101	50 - 146			
Surrogate: Dibromofluoromethan	51.04			50.0000		102	77 - 159			
Surrogate: Toluene-d8	49.78			50.0000		99.6	81 - 128			
_										
Matrix Spike Dup (B1E0457-MSD1)	So	ource: 21011	82-01	Prepare		Analyzed: 5/27/	2021		
,1,1,2-Tetrachloroethane	48.2000	5.0	0.52	50.0000	ND	96.4	50 - 126	5.48	20	
,1,1-Trichloroethane	53.1900	5.0	0.26	50.0000	ND	106	56 - 144	4.15	20	
,1,2,2-Tetrachloroethane	47.6800	5.0	0.21	50.0000	ND	95.4	20 - 153	0.419	20	
,1,2-Trichloroethane	53.4400	5.0	0.40	50.0000	ND	107	0 - 421	5.89	20	
1-Dichloroethane	55.9500	5.0	1.4	50.0000	ND	112	58 - 131	2.99	20	
,1-Dichloroethene	52.4100	5.0	1.9	50.0000	ND	105	60 - 143	1.93	20	
,1-Dichloropropene	48.2800	5.0	0.54	50.0000	ND	96.6	57 - 144	13.2	20	
,2,3-Trichloropropane	48.3600	5.0	0.40	50.0000	ND	96.7	52 - 121	0.872	20	
,2,3-Trichlorobenzene	42.5800	5.0	0.83	50.0000	ND	85.2	0 - 153	2.42	20	
,2,4-Trichlorobenzene	44.3700	5.0	0.80	50.0000	ND	88.7	0 - 146	0.520	20	
,2,4-Trimethylbenzene	44.5800	5.0	0.91	50.0000	ND	89.2	26 - 155	0.540	20	
,2-Dibromo-3-chloropropane	49.7800	10	1.1	50.0000	ND	99.6	36 - 125	21.9	20	R
,2-Dibromoethane	51.4200	5.0	0.40	50.0000	ND	103	56 - 127	3.97	20	
2-Dichlorobenzene	44.2100	5.0	0.21	50.0000	ND	88.4	26 - 136	3.25	20	
2-Dichloroethane	52.2300	5.0	0.50	50.0000	ND	104	60 - 118	7.86	20	
,2-Dichloropropane	53.0400	5.0	0.46	50.0000	ND	106	52 - 124	4.06	20	
3,5-Trimethylbenzene	45.3500	5.0	0.70	50.0000	ND	90.7	31 - 152	1.91	20	
3-Dichlorobenzene	45.8100	5.0	0.36	50.0000	ND	91.6	26 - 140	3.92	20	
,3-Dichloropropane	47.7000	5.0	0.49	50.0000	ND	95.4	56 - 118	3.63	20	

RPD

% Rec

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

Volatile Organic Compounds by EPA 8260B - Quality Control (cont'd)

Γ		Result	PQL	MDL	Spike	Source		% Rec		RPD	
1	Analyte	(119/kg)	(119/kg)	(119/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes

Batch B1E0457 - MSVOA_S (continued)

Matrix Spike Dup (B1E0457-M	ASD1) - Continued	;	Source: 2101	182-01	Prepared	1: 5/27/2021	Analyzed: 5/27/2	2021	
2,2-Dichloropropane	55.9900	5.0	0.28	50.0000	ND	112	50 - 146	4.77	20
2-Chlorotoluene	45.0600	5.0	0.53	50.0000	ND	90.1	28 - 149	0.200	20
4-Chlorotoluene	43.7900	5.0	0.40	50.0000	ND	87.6	35 - 142	0.864	20
4-Isopropyltoluene	45.7400	5.0	0.81	50.0000	ND	91.5	12 - 175	0.979	20
Benzene	50.4500	5.0	0.36	50.0000	ND	101	61 - 127	7.51	20
Bromobenzene	43.8600	5.0	0.62	50.0000	ND	87.7	40 - 129	3.82	20
Bromochloromethane	53.8100	5.0	0.30	50.0000	ND	108	57 - 135	5.24	20
Bromodichloromethane	55.8900	5.0	0.52	50.0000	ND	112	58 - 119	14.9	20
Bromoform	48.3400	5.0	1.4	50.0000	ND	96.7	48 - 130	1.42	20
Bromomethane	45.6100	5.0	2.5	50.0000	ND	91.2	40 - 183	7.35	20
Carbon disulfide	55.8100	5.0	0.94	50.0000	ND	112	49 - 153	8.11	20
Carbon tetrachloride	50.3300	5.0	0.73	50.0000	ND	101	49 - 146	2.45	20
Chlorobenzene	46.4400	5.0	0.42	50.0000	ND	92.9	46 - 128	0.129	20
Chloroethane	53.4300	5.0	1.5	50.0000	ND	107	37 - 178	19.6	20
Chloroform	53.6600	5.0	0.24	50.0000	ND	107	59 - 129	4.93	20
Chloromethane	51.5900	5.0	1.1	50.0000	ND	103	31 - 168	5.65	20
cis-1,2-Dichloroethene	54.5800	5.0	0.20	50.0000	ND	109	52 - 137	0.421	20
cis-1,3-Dichloropropene	51.9900	5.0	0.39	50.0000	ND	104	45 - 130	5.70	20
Di-isopropyl ether	57.2800	5.0	1.9	50.0000	ND	115	55 - 132	2.06	20
Dibromochloromethane	44.5900	5.0	0.81	50.0000	ND	89.2	56 - 117	0.425	20
Dibromomethane	46.7600	5.0	0.23	50.0000	ND	93.5	62 - 116	0.171	20
Dichlorodifluoromethane	38.7700	5.0	0.14	50.0000	ND	77.5	0 - 266	11.0	20
Ethyl Acetate	580.670	50	7.0	500.000	ND	116	16 - 156	1.02	20
Ethyl Ether	581.860	50	17	500.000	ND	116	58 - 127	0.252	20
Ethyl tert-butyl ether	55.9700	5.0	0.85	50.0000	ND	112	23 - 181	0.879	20
Ethylbenzene	46.1600	5.0	0.43	50.0000	ND	92.3	43 - 144	0.0650	20
Freon-113	52.4500	5.0	1.3	50.0000	ND	105	45 - 148	3.99	20
Hexachlorobutadiene	46.6800	5.0	0.40	50.0000	ND	93.4	0 - 149	10.5	20
Isopropylbenzene	47.0300	5.0	0.79	50.0000	ND	94.1	38 - 148	4.68	20
m,p-Xylene	92.5700	10	0.98	100.000	ND	92.6	43 - 146	1.58	20
Methylene chloride	56.9800	5.0	2.2	50.0000	ND	114	51 - 139	10.0	20
MTBE	56.3000	5.0	0.81	50.0000	ND	113	41 - 152	2.37	20
n-Butylbenzene	45.7400	5.0	1.2	50.0000	ND	91.5	11 - 163	4.45	20
n-Propylbenzene	45.5100	5.0	0.78	50.0000	ND	91.0	31 - 154	0.176	20
Naphthalene	45.8300	5.0	1.1	50.0000	ND	91.7	0 - 266	3.08	20
o-Xylene	45.3100	5.0	0.67	50.0000	ND	90.6	40 - 142	1.03	20
sec-Butylbenzene	46.6600	5.0	0.63	50.0000	ND	93.3	20 - 161	6.96	20
Styrene	46.6100	5.0	0.45	50.0000	ND	93.2	31 - 157	0.646	20
tert-Amyl methyl ether	57.2200	5.0	1.1	50.0000	ND	114	20 - 179	0.913	20
tert-Butanol	286.820	100	11	250.000	ND	115	6 - 173	2.09	20

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To : Alicia Jansen
San Bernardino , CA 92408 Reported : 06/03/2021

	Result	PQL	MDL	Spike	Source	•	% Rec	•	RPD	•
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Level	Result	% Rec	Limits	RPD	Limit	Notes
,	(8-4-8)	(-6.46)	(-8/16)							
Batch B1E0457 - MSVOA_S (co	ntinued)									
Matrix Spike Dup (B1E0457-MSD1) - Continued	So	ource: 21011	82-01	Prepared	d: 5/27/2021	Analyzed: 5/27/	2021		
tert-Butylbenzene	45.3100	5.0	0.80	50.0000	ND	90.6	28 - 155	1.80	20	
Tetrachloroethene	49.8700	5.0	0.31	50.0000	ND	99.7	39 - 144	5.27	20	
Toluene	51.7300	5.0	0.27	50.0000	ND	103	10 - 179	10.6	20	
trans-1,2-Dichloroethene	56.9700	5.0	0.56	50.0000	ND	114	60 - 135	4.80	20	
trans-1,3-Dichloropropene	52.9800	5.0	0.59	50.0000	ND	106	53 - 131	7.93	20	
Trichloroethene	51.0600	5.0	0.32	50.0000	ND	102	54 - 135	11.3	20	
Trichlorofluoromethane	56.9900	5.0	1.0	50.0000	ND	114	35 - 165	2.25	20	
Vinyl acetate	382.280	50	6.0	500.000	ND	76.5	0 - 180	19.1	20	
Vinyl chloride	54.8900	5.0	0.92	50.0000	ND	110	44 - 165	1.54	20	
Surrogate: 1,2-Dichloroethane-d4	59.06			50.0000		118	66 - 200			
Surrogate: 4-Bromofluorobenzene	53.18			50.0000		106	50 - 146			
Surrogate: Dibromofluoromethan	55.59			50.0000		111	77 - 159			
Surrogate: Toluene-d8	53.35			50.0000		107	81 - 128			

Stantec Project Number: 185805145, Dedeaux - SBD

735 E. Carnegie Drive, Suite 280 Report To: Alicia Jansen
San Bernardino, CA 92408 Reported: 06/03/2021

Notes and Definitions

R RPD value outside acceptance criteria. Calculation is based on raw values.

ND Analyte is not detected at or above the Practical Quantitation Limit (PQL). When client requests quantitation against MDL,

analyte is not detected at or above the Method Detection Limit (MDL)

PQL Practical Quantitation Limit

MDL Method Detection Limit

NR Not Reported

RPD Relative Percent Difference

CA2 CA-ELAP (CDPH)
OR1 OR-NELAP (OSPHL)

Notes

- (1) The reported MDL and PQL are based on prep ratio variation and analytical dilution.
- (2) The suffix [2C] of specific analytes signifies that the reported result is taken from the instrument's second column.
- (3) Results are wet unless otherwise specified.

Laboratory Project Number: 2.101/8/

Page 1 of 2

CHAIN OF CUSTODY

Stantec

	Client Name/Address:	Project Manager:			1				Analysi	Analysis Required			Tur	Turn Around Time:
	Stantec Consulting Services Inc.	Alicia Jansen			_				_				Z	Normal X
	735 E. Carnegie Drive, Suite 280	E-Mail Address:											72	72 Hour:
	San Bernardino, CA 92408	alicia.jansen@stantec.com	stantec.con	-		L	gc						48	48 Hour
	909-335-6116	Sampler Name:				,00	TOO						24	24 Hour
	Laboratory:	Mitchell Bohn					2 - 0						Samo	Same Day:
	ATL	Stantec Project Number:	umber:				סעו							Other:
	3275 Walnut Ave.	185805145			əld								Sample	Sample Temp °C: 5.1
	Signal Hill, CA 800-499-4388	Project:	,		me2 l	0978	9010 90101							i i
			\vdash	\vdash	erec			ורם						
	Sample Description/Identification Sample Matrix	(see below)	sample Date	samble lime	Filt	\dashv	\dashv	OH					Spe	Special Instructions
-	1:18 5-1-15	1 1	5/2/2	9280				×						
4	0)-1-05		-	0840		\dashv		X	1				_	
7	21-1-12			०४ तप		×	V		\dashv					
7	50-2-8			2160				×						
\sim	34-2-210			83.60				X	.,	-				
9				8438		X	X	_	4					
i	51-9-8			100				×						
00	50-3-			9001		X	,	_						
6	51-8-15		_	1001		18		X	. ,					
10	5-4-75		_	5701		A .		X						
l,	50-4-10			1048		X	X							
17	31-4-15			623			-	X	./					
13	1-1-85			7114			X				1			
7	58-1-3	ァ ァ	7	1111				X			1		_	
Й		1 /	12/21/21	-			X	_	\dashv				_	
	Sample Preservative: 1=ICE - 2=HCl - 3:	3=H ₂ SO ₄ - 4=HNO ₃	Ю ₃ - 5 =NaOH	Н - 6 =Other:										
	Special Instruction:													
		TROP												
			Ė			Bocoing	Poconing Du t Compagn Maho.	AM water				Date	Time	di
Pag	Kelingusher By:	5/24	21	1520		A STATE OF THE STA	and + Coll		35	Stanter		5/22/2		80:71
e 34 (Kelfinglished By + Collingary Marine:	Date O 15	1 2	Time \$2.00		Received By	Ned By + Com	Company Name:	ime:			St25/21		ne 2 08
of 35	~	Date 572572 1	-	Time 13 24		Receive	Received By + Company Name:	pany N	me:		2.0	Date / 15/2		
_		-				- F						The second secon	The second name of the owner, where the owner, which is the owner, where the owner, which is the owner, which is the owner, which is the owner, where the owner, which is the owner, which is the owner, where the owner, which is the owner, where the owner, which i	

CHAIN OF CUSTODY

Page 2 of 2

Laboratory Project Number: 210/18/

Client Name/Address:	Project Manager:		Anal	Analysis Required		Turn Around Time:
Stantec Consulting Services Inc.	Alicia Jansen					Normal X
735 E. Carnegie Drive, Suite 280	E-Mail Address:					72 Hour:
San Bernardino, CA 92408	alicia.jansen@stantec.com	88				48 Hour
909-335-6116	Sampler Name:	108				24 Hour
Laboratory:	Mitchell Bohn	- 0				Same Day:
ATL	Stantec Project Number:	ЯО				Other:
3275 Walnut Ave.	185805145	8	80			Sample Temp °C: 51 °C
Signal filli, CA 800-499-4388	Project: Dedeaux - SBD	8560	109 -			
Sample Description/Identification Sample Matrix		VOCs -	dq\sA GJOH			Special Instructions
58-2-3 50:1	1, 1 5/24/21 1135		×			
1-8-18			×			
50-5-3	1215		×			
1-2-05	1 1 1 1		X			
1.8 8-6-3	1 (5/24/2/1303		×			
					ä	
e: 1=ICE - 2=HCl -	$3=H_2SO_4 - 4=HNO_3 - 5=NaOH - 6=Other:_$					
Special Instruction:					es	
Relinquished by:	Date Time 1520	Received By	Received By + Company Name:	Steunter 5	ate 5 (25 /21	Time (2:08
Relinquished By + Company Name:	Date Time 7/25/21 12:08	Received By	Received By + Company Name: (Wax Rthulper		Date 5/15/12	Time (20 8
d By + C	Date Time 13 24	Received By	Received By+-Company Name:	Pa	Date 5/28/21	Time 1:26
				-	,	

3528

Page 35 of 35

Alicia Jansen Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408

H&P Project: ST052721-SB2

Client Project: 185805145/ Industrial Pkwy

Dear Alicia Jansen:

Enclosed is the analytical report for the above referenced project. The data herein applies to samples as received by H&P Mobile Geochemistry, Inc. on 27-May-21 which were analyzed in accordance with the attached Chain of Custody record(s).

The results for all sample analyses and required QA/QC analyses are presented in the following sections and summarized in the documents:

- Sample Summary
- Case Narrative (if applicable)
- Sample Results
- Quality Control Summary
- · Notes and Definitions / Appendix
- Chain of Custody
- · Sampling Logs (if applicable)

Unless otherwise noted, I certify that all analyses were performed and reviewed in compliance with our Quality Systems Manual and Standard Operating Procedures. This report shall not be reproduced, except in full, without the written approval of H&P Mobile Geochemistry, Inc.

We at H&P Mobile Geochemistry, Inc. sincerely appreciate the opportunity to provide analytical services to you on this project. If you have any questions or concerns regarding this analytical report, please contact me at your convenience at 760-804-9678.

Sincerely,

Lisa Eminhizer Laboratory Director

H&P Mobile Geochemistry, Inc. is certified under the California ELAP and the National Environmental Laboratory Accreditation Conference (NELAC) for the fields of proficiency and analytes listed on those certificates. H&P is approved as an Environmental Testing Laboratory in accordance with the DoD-ELAP Program and ISO/IEC 17025:2005 programs for the fields of proficiency and analytes included in the certification process and to the extent offered by the accreditation agency. Unless otherwise noted, accreditation certificate numbers, expiration of certificates, and scope of accreditation can be found at: www.handpmg.com/about/certifications. Fields of services and analytes contained in this report that are not listed on the certificates should be considered uncertified or unavailable for certification.

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SV-1-5	E105093-01	Vapor	27-May-21	27-May-21
SV-1-15	E105093-02	Vapor	27-May-21	27-May-21
SV-2-5	E105093-03	Vapor	27-May-21	27-May-21
SV-2-15	E105093-04	Vapor	27-May-21	27-May-21
SV-3-5	E105093-05	Vapor	27-May-21	27-May-21
SV-3-15	E105093-06	Vapor	27-May-21	27-May-21
SV-4-5	E105093-07	Vapor	27-May-21	27-May-21
SV-4-15	E105093-08	Vapor	27-May-21	27-May-21
SV-5-5	E105093-09	Vapor	27-May-21	27-May-21
SV-5-15	E105093-10	Vapor	27-May-21	27-May-21
SV-6-5	E105093-11	Vapor	27-May-21	27-May-21
SV-6-15	E105093-12	Vapor	27-May-21	27-May-21
SV-6-15 REP	E105093-13	Vapor	27-May-21	27-May-21
SV-7-5	E105093-14	Vapor	27-May-21	27-May-21
SV-7-15	E105093-15	Vapor	27-May-21	27-May-21

H&P Mobile Geochemistry Inc.

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

H&P Mobile Geochemistry, Inc.

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1-5 (E105093-01) Vapor Sar	mpled: 27-May-21	Received: 27-M	[ay-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	4400		400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	410	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F11	3) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh	ane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND		80	"	"	"	"	"	"	
Dibromochloromethane	ND		400	"	"	"	"	"	"	
Chlorobenzene	ND		80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

			Widdie		-					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1-5 (E105093-01) Vapor	Sampled: 27-May-21	Received: 27-M	lay-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
a bil a			102.07		125	"	"	"	,,	
Surrogate: Dibromofluorometh			102 %		125	"	"	"	"	
Surrogate: 1,2-Dichloroethane	-a4		92.5 % 87.2 %		·125 ·125	"	,,	"	"	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenz	ana		87.2 % 92.1 %		-125 -125	,,	,,	"	"	
Surrogate. 4-Bromojtuorobenz	ene		92.1 70	/3-	·14J					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1-15 (E105093-02) Vapor Sampled:	27-May-21	Received: 27-N	/Iay-21							J- Repor
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	8800	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	760	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

			1710bile C		-					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-1-15 (E105093-02) Vapor	Sampled: 27-May-21	Received: 27-M	May-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
G , D:1			00.504	7.	125	"	,,	"	"	
Surrogate: Dibromofluorometho			98.5 % 91.6 %	75- 75-		"	"	"	"	
Surrogate: 1,2-Dichloroethane- Surrogate: Toluene-d8	·u4		91.6 % 95.6 %	/3- <i>75-</i>		,,	,,	,,	,,	
Surrogate: 4-Bromofluorobenze	ene		90.4 %	75-		"	"	"	"	
, in the second										

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino
735 F. Carnegie Dr. Ste 28

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2-5 (E105093-03) Vapor San	ıpled: 27-May-21	Received: 27-M	ay-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	4400	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	400	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F11	3) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh	ane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

09-Jun-21 09:48

Stantec - San Bernardino
735 F. Carnegie Dr. Ste 28

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy
Project Manager: Alicia Jansen

Volatile Organic Compounds by H&P 8260SV

Analyte	Result		Reporting							
3	Kesuit	MDL	Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2-5 (E105093-03) Vapor	Sampled: 27-May-21	Received: 27-M	ay-21		<u> </u>					J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Surrogate: Dibromofluorometho			103 %	75-		"	"	"	"	
Surrogate: 1,2-Dichloroethane-	d4		91.3 %	75-		"	"	"	"	
Surrogate: Toluene-d8			93.3 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenze	ene		91.6 %	75-	123	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280

San Bernardino, CA 92408

Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2-15 (E105093-04) Vapor Sa	ampled: 27-May-21	Received: 27-M	May-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	7200	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	610	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F11	13) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh	nane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE	E) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

			1710bile C		-					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-2-15 (E105093-04) Vapor	Sampled: 27-May-21	Received: 27-M	May-21		<u> </u>				<u> </u>	J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Cumpo ato, Dib	~~~		0250/	75	125	"	,,	"	"	
Surrogate: Dibromofluorometho Surrogate: 1,2-Dichloroethane-			93.5 % 86.9 %	75- 75-		,,	,,	"	,,	
Surrogate: Toluene-d8	·u+		86.9 % 84.9 %	75-		,,	,,	"	"	
Surrogate: 1-Bromofluorobenze	ene		90.9 %	75-		"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3-5 (E105093-05) Vapor Samp							•			J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	о- кероге
Dichlorodifluoromethane (F12)	1400		400	ug ms	"	"	" "	" "	"	QL-1H
Chloromethane	ND		400	"	"	"	"	"	"	QL 111
Vinyl chloride	ND		40	"	"	"	"	"	"	
Bromomethane	ND		400	"	"	"	"	"	"	
Chloroethane	ND		400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND		400	"	"	"	"	"	"	
1,1-Dichloroethene	ND		400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND		400	"	"	"	"	"	"	
Methylene chloride (Dichloromethan			400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND		400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND		400	"	"	"	"	"	"	
1,1-Dichloroethane	ND		400	"	"	"	"	"	"	
2,2-Dichloropropane	ND		400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND		400	"	"	"	"	"	"	
Chloroform	ND		80	"	"	"	"	"	"	
Bromochloromethane	ND		400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND		400	"	"	"	"	"	"	
1,1-Dichloropropene	ND		400	"	"	"	"	"	"	
Carbon tetrachloride	ND		80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		80	"	"	"	"	"	"	
Benzene	ND		80	"	"	"	"	"	"	
Trichloroethene	ND		80	"	"	"	"	"	"	
1,2-Dichloropropane	ND		400	"	"	"	"	"	"	
Bromodichloromethane	ND		400	"	"	"	"	"	"	
Dibromomethane	ND		400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND		400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND		400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND		400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND		80	"	"	"	"	"	"	
Dibromochloromethane	ND		400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND		400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

					11301 y, 111					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3-5 (E105093-05) Vapor	Sampled: 27-May-21	Received: 27-M	ay-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Surrogate: Dibromofluorometh	~~~		97.3 %	75	.125	,,	,,	"	"	
Surrogate: Dibromojiuorometha Surrogate: 1,2-Dichloroethane-			97.3 % 83.7 %		·125 ·125	"	,,	"	"	
Surrogate: Toluene-d8	-u+		88.1 %		.125	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ene		92.0 %		125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3-15 (E105093-06) Vapor S	ampled: 27-May-21	Received: 27-N	Лау-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	5400	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	420	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F1	13) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh	hane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTB)	E) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 Project Number: 185805145/ Industrial Pkwy San Bernardino, CA 92408 Project Manager: Alicia Jansen

Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

			Reporting		Dilution					
Analyte	Result	MDL	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-3-15 (E105093-06) Vapor	Sampled: 27-May-21	Received: 27-N	May-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Commenter Dilamondo			102.0/	7.5	125	,,	,,	"	"	
Surrogate: Dibromofluorometha Surrogate: 1,2-Dichloroethane-			102 % 94.2 %	75- 75-		,,	,,	"	"	
Surrogate: 1,2-Dichloroethane- Surrogate: Toluene-d8	·u4		94.2 % 87.4 %	/3- 75-		,,	,,	,,	,,	
Surrogate: 4-Bromofluorobenze	on <i>o</i>		87.4 % 87.9 %	75-		"	"	"	"	
Surroguie. 4-Bromojiuorobenze	ne		0/.7/0	/3-	123					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 28 Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 Project Number: 185805145/ Industrial Pkwy San Bernardino, CA 92408 Project Manager: Alicia Jansen

Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4-5 (E105093-07) Vapor Sampled: 2	27-May-21	Received: 27-Ma	ay-21							J- Repor
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	3300	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	280	160	400	"	"	"	"	"	"	QL-1H, J
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

A 1 4	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
Analyte				Units	raciol	Daten	riepaied	Anaryzed	Method	
	Sampled: 27-May-21	Received: 27-M	1ay-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
					105	,,	,,	"	,,	
Surrogate: Dibromofluorometh			101 %		125	,,	"	"	"	
Surrogate: 1,2-Dichloroethane	?-a4		83.5 %		125	,,	,,	"	"	
Surrogate: Toluene-d8			84.5 %		125	"	"	"	"	
Surrogate: 4-Bromofluorobenz	rene		88.4 %	/3-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino
735 F. Carnegie Dr. Ste 28

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4-15 (E105093-08) Vapor S	ampled: 27-May-21	Received: 27-N	May-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	7500	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	540	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F1	13) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh	nane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBI	E) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

	P 1	MDI	Reporting	TI '4	Dilution	D ()	D .		Mala	N
Analyte	Result	MDL	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-4-15 (E105093-08) Vapor	Sampled: 27-May-21	Received: 27-	May-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
G Di A i			100.07	7.5	125	,,	"	"	"	
Surrogate: Dibromofluorometh			100 %		125 125	"	,,	"	"	
Surrogate: 1,2-Dichloroethane- Surrogate: Toluene-d8	u4		84.0 % 86.9 %		125 125	,,	,,	"	,,	
Surrogate: 101uene-as Surrogate: 4-Bromofluorobenze	nn 0		88.6 %		125	,,	,,	"	"	
Surroguie. 4-Bromojiuorobenze	ne		00.0 70	/3-	143					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5-5 (E105093-09) Vapor Sar	npled: 27-May-21	Received: 27-M	ay-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	4300	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	330	160	400	"	"	"	"	"	"	QL-1H, J
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F11	3) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh	ane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280

San Bernardino, CA 92408

Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

					1115t1 y, 111					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5-5 (E105093-09) Vapor	Sampled: 27-May-21	Received: 27-M	Iay-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
a , p.i a			06.2.06	<i>a-</i>	125	"	"	"	"	
Surrogate: Dibromofluorometh			96.2 %		-125	"	"	"	"	
Surrogate: 1,2-Dichloroethane	2-a4		81.7 % 86.7 %		-125 -125	"	,,	"	"	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenz	ene		86.7 % 90.7 %		-125 -125	"	,,	"	,,	
Surroguic. 7-Bromojiuorobenz	CHC		70.7 70	/ 5-	143					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5-15 (E105093-10) Vapor Sampled	: 27-May-21	Received: 27-N	May-21							J- Repor
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	11000	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	740	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	170	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

		1/0-	Reporting		Dilution					
Analyte	Result	MDL	Limit	Units	Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5-15 (E105093-10) Vapor	Sampled: 27-May-21	Received: 27-M	May-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Surrogate: Dibromofluorometho	714.0		97.1 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-			78.3 %	75-		"	"	"	"	
Surrogate: Toluene-d8	u 7		87.1 %	75-		"	"	"	"	
Surrogate: 4-Bromofluorobenze	ne		90.8 %	75-		"	"	"	"	
Sair ogaic. 7 Bromograorovenze			70.0 70	, 5-	127					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 Project: ST052721-SB2

San Bernardino, CA 92408

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-5 (E105093-11) Vapor Sa	ampled: 27-May-21	Received: 27-M	ay-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)			400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	310	160	400	"	"	"	"	"	"	QL-1H, J
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F	113) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorome	thane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTE	E) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND		400	"	"	"	"	"	"	
Chlorobenzene	ND		80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

					11301 y, 111					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-5 (E105093-11) Vapor	Sampled: 27-May-21	Received: 27-M	ay-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
a Di a i			105.04	7.5	125	,,	,,	"	,,	
Surrogate: Dibromofluorometh			105 % 87.4 %		.125 .125	"	,,	"	"	
Surrogate: 1,2-Dichloroethane Surrogate: Toluene-d8	-44		87.4 % 97.6 %		·125 ·125	,,	,,	,,	,,	
Surrogate: 4-Bromofluorobenza	ene		97.0 % 83.9 %		.125 .125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-15 (E105093-12) Vapor Sampled:	: 27-May-21	Received: 27-M	May-21							J- Repor
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	9800	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	820	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichloromethane)	ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

		11001	Mobile C	COCHCII	115t1 y, 111					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-15 (E105093-12) Vapor	Sampled: 27-May-21	Received: 27-1	May-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Surrogate: Dibromofluorometh	ane		105 %	75-	125	"	"	"	"	
Surrogate: 1,2-Dichloroethane-			83.8 %	75-		"	"	"	"	
Surrogate: Toluene-d8			91.4 %	75-	125	"	"	"	"	
Surrogate: 4-Bromofluorobenze	ene		92.1 %	75-	125	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Reported:
Project Manager: Alicia Jansen 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-6-15 REP (E105093-13) Vapor	Sampled: 27-May-21	Received:	27-May-21							J- Repor
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	10000	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	840	160	400	"	"	"	"	"	"	QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F113)	ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichloromethane	e) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE)	ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

That Widdle Geochemistry, Inc.												
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes		
SV-6-15 REP (E105093-13) Vapor	Sampled: 27-May-21	Received	27-May-21							J- Report		
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
m,p-Xylene	ND	160	400	"	"	"	"	"	"			
o-Xylene	ND	160	400	"	"	"	"	"	"			
Styrene	ND	160	400	"	"	"	"	"	"			
Bromoform	ND	160	400	"	"	"	"	"	"			
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"			
n-Propylbenzene	ND	160	400	"	"	"	"	"	"			
Bromobenzene	ND	160	400	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"			
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"			
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"			
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"			
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"			
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"			
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"			
n-Butylbenzene	ND	160	400	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"			
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"			
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"			
Naphthalene	ND	80	80	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"			
Surrogate: Dibromofluoromethane			96.5 %	75-12	25	"	"	"	"			
Surrogate: 1,2-Dichloroethane-d4			83.3 %	75-12	25	"	"	"	"			
Surrogate: Toluene-d8			85.7 %	75-12	25	"	"	"	"			
Surrogate: 4-Bromofluorobenzene			89.8 %	75-12	25	"	"	"	"			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino
735 F. Carnegie Dr. Ste 28

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 Project Number: 185805145/ Industrial Pkwy San Bernardino, CA 92408 Project Manager: Alicia Jansen

Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-7-5 (E105093-14) Vapor Sar	npled: 27-May-21	Received: 27-M					_			J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	1500		400	"	"	"	"	"	"	QL-1H
Chloromethane	ND		400	"	"	"	"	"	"	
Vinyl chloride	ND		40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND		400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	ND		400	"	"	"	"	"	"	
1,1-Dichloroethene	ND		400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F11			400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh			400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTBE) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND		400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND		400	"	"	"	"	"	"	
Chloroform	ND		80	"	"	"	"	"	"	
Bromochloromethane	ND		400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND		400	"	"	"	"	"	"	
Carbon tetrachloride	ND		80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND		80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND		80	"	"	"	"	"	"	
1,2-Dichloropropane	ND		400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND		400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND		400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND		80	"	"	"	"	"	"	
Dibromochloromethane	ND		400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND		400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr. Ste 28 Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 Project Number: 185805145/ Industrial Pkwy San Bernardino, CA 92408 Project Manager: Alicia Jansen

Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

					11301 y, 111					
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-7-5 (E105093-14) Vapor	Sampled: 27-May-21	Received: 27-M	lay-21							J- Report
1,1,1,2-Tetrachloroethane	ND	160	400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
m,p-Xylene	ND	160	400	"	"	"	"	"	"	
o-Xylene	ND	160	400	"	"	"	"	"	"	
Styrene	ND	160	400	"	"	"	"	"	"	
Bromoform	ND	160	400	"	"	"	"	"	"	
Isopropylbenzene (Cumene)	ND	160	400	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	160	400	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	160	400	"	"	"	"	"	"	
n-Propylbenzene	ND	160	400	"	"	"	"	"	"	
Bromobenzene	ND	160	400	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
2-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
4-Chlorotoluene	ND	160	400	"	"	"	"	"	"	
tert-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	160	400	"	"	"	"	"	"	
sec-Butylbenzene	ND	160	400	"	"	"	"	"	"	
p-Isopropyltoluene	ND	160	400	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
n-Butylbenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	160	400	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1600	4000	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
Hexachlorobutadiene	ND	160	400	"	"	"	"	"	"	
Naphthalene	ND	80	80	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	160	400	"	"	"	"	"	"	
a bil a			101.07		125	,,	"	"	,,	
Surrogate: Dibromofluorometh			101 %		125	"	"	"	"	
Surrogate: 1,2-Dichloroethane	-a4		82.7 % 98.7 %		.125 .125	"	,,	"	"	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenz	ana		98.7 % 88.0 %		·125 ·125	"	,,	"	"	
Surrogate. 4-Bromojtuorobenz	ene		00.0 70	/3-	143					

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-7-15 (E105093-15) Vapor S	ampled: 27-May-21	Received: 27-N	Лау-21							J- Report
1,1-Difluoroethane (LCC)	ND		400	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
Dichlorodifluoromethane (F12)	5200	160	400	"	"	"	"	"	"	QL-1H
Chloromethane	ND	160	400	"	"	"	"	"	"	
Vinyl chloride	ND	40	40	"	"	"	"	"	"	
Bromomethane	ND	160	400	"	"	"	"	"	"	
Chloroethane	ND	160	400	"	"	"	"	"	"	
Trichlorofluoromethane (F11)	310	160	400	"	"	"	"	"	"	J, QL-1H
1,1-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1,2 Trichlorotrifluoroethane (F1	13) ND	160	400	"	"	"	"	"	"	
Methylene chloride (Dichlorometh	nane) ND	160	400	"	"	"	"	"	"	
Methyl tertiary-butyl ether (MTB)	E) ND	160	400	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
1,1-Dichloroethane	ND	160	400	"	"	"	"	"	"	
2,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	160	400	"	"	"	"	"	"	
Chloroform	ND	40	80	"	"	"	"	"	"	
Bromochloromethane	ND	160	400	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,1-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Carbon tetrachloride	ND	40	80	"	"	"	"	"	"	
1,2-Dichloroethane (EDC)	ND	40	80	"	"	"	"	"	"	
Benzene	ND	40	80	"	"	"	"	"	"	
Trichloroethene	ND	48	80	"	"	"	"	"	"	
1,2-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Bromodichloromethane	ND	160	400	"	"	"	"	"	"	
Dibromomethane	ND	160	400	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
Toluene	ND	320	800	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	160	400	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	160	400	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	160	400	"	"	"	"	"	"	
1,3-Dichloropropane	ND	160	400	"	"	"	"	"	"	
Tetrachloroethene	ND	64	80	"	"	"	"	"	"	
Dibromochloromethane	ND	160	400	"	"	"	"	"	"	
Chlorobenzene	ND	40	80	"	"	"	"	"	"	
Ethylbenzene	ND	160	400	"	"	"	"	"	"	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Volatile Organic Compounds by H&P 8260SV

1 7							-		WIODIIC C			
1,1,1,2-Tetrachloroethane ND 160 400 ug/m3 0.04 EE12703 27-May-21 27-May-21 H&P 82608V m,p-Xylene ND 160 400 " <th>lotes</th> <th>N</th> <th>Method</th> <th>Analyzed</th> <th>Prepared</th> <th>Batch</th> <th></th> <th>Units</th> <th>, .</th> <th>MDL</th> <th>Result</th> <th>Analyte</th>	lotes	N	Method	Analyzed	Prepared	Batch		Units	, .	MDL	Result	Analyte
m,p-Xylene ND 160 400 "	Repor	J- I							Iay-21	Received: 27-N	Sampled: 27-May-21	SV-7-15 (E105093-15) Vapor
o-Xylene ND 160 400 " " " " " " " " " " " " " " " " "		,	H&P 8260SV	27-May-21	27-May-21	EE12703	0.04	ug/m3	400	160	ND	1,1,1,2-Tetrachloroethane
Styrene ND 160 400 " <t< td=""><td></td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>400</td><td>160</td><td>ND</td><td>m,p-Xylene</td></t<>			"	"	"	"	"	"	400	160	ND	m,p-Xylene
Bromoform ND 160 400 "			"	"	"	"	"	"	400	160	ND	o-Xylene
Isopropylbenzene (Cumene) ND 160 400 " " " " " " " " "			"	"	"	"	"	"	400	160	ND	Styrene
1,1,2,2-Tetrachloroethane ND 160 400 " <			"	"	"	"	"	"	400	160	ND	Bromoform
1,2,3-Trichloropropane ND 160 400 "			"	"	"	"	"	"	400	160	ND	Isopropylbenzene (Cumene)
n-Propylbenzene ND 160 400 "			"	"	"	"	"	"	400	160	ND	1,1,2,2-Tetrachloroethane
Bromobenzene ND 160 400 "			"	"	"	"	"	"	400	160	ND	1,2,3-Trichloropropane
1,3,5-Trimethylbenzene ND 160 400 "			"	"	"	"	"	"	400	160	ND	n-Propylbenzene
2-Chlorotoluene ND 160 400 "			"	"	"	"	"	"	400	160	ND	Bromobenzene
4-Chlorotoluene ND 160 400 " " " " " " " " " " " tert-Butylbenzene ND 160 400 " " " " " " " " " " " " " " " " "			"	"	"	"	"	"	400	160	ND	1,3,5-Trimethylbenzene
tert-Butylbenzene ND 160 400 " " " " " " "			"	"	"	"	"	"	400	160	ND	2-Chlorotoluene
			"	"	"	"	"	"	400	160	ND	4-Chlorotoluene
1,2,4-Trimethylbenzene ND 160 400 " " " " " " "			"	"	"	"	"	"	400	160	ND	tert-Butylbenzene
			"	"	"	"	"	"	400	160	ND	1,2,4-Trimethylbenzene
sec-Butylbenzene ND 160 400 " " " " " "			"	"	"	"	"	"	400	160	ND	sec-Butylbenzene
p-Isopropyltoluene ND 160 400 " " " " " "			"	"	"	"	"	"	400	160	ND	p-Isopropyltoluene
1,3-Dichlorobenzene ND 160 400 " " " " " " "			"	"	"	"	"	"	400	160	ND	1,3-Dichlorobenzene
1,4-Dichlorobenzene ND 160 400 " " " " " " "			"	"	"	"	"	"	400	160	ND	1,4-Dichlorobenzene
n-Butylbenzene ND 160 400 " " " " " "			"	"	"	"	"	"	400	160	ND	n-Butylbenzene
1,2-Dichlorobenzene ND 160 400 " " " " " " "			"	"	"	"	"	"	400	160	ND	1,2-Dichlorobenzene
1,2-Dibromo-3-chloropropane ND 1600 4000 " " " " " " " "			"	"	"	"	"	"	4000	1600	ND	1,2-Dibromo-3-chloropropane
1,2,4-Trichlorobenzene ND 160 400 " " " " " " "			"	"	"	"	"	"	400	160	ND	1,2,4-Trichlorobenzene
Hexachlorobutadiene ND 160 400 " " " " " "			"	"	"	"	"	"	400	160	ND	Hexachlorobutadiene
Naphthalene ND 80 80 " " " " " "			"	"	"	"	"	"	80	80	ND	Naphthalene
1,2,3-Trichlorobenzene ND 160 400 " " " " " " "			"	"	"	"	"	"	400		ND	1,2,3-Trichlorobenzene
									_			
Surrogate: Dibromofluoromethane 102 % 75-125 " " " " "												•
Surrogate: 1,2-Dicnioroeinane-a4 89.3 % /3-125											14	•
Surrogue: 10tuene-40 90.0 /6 /3-123			"									· ·
Surrogate: 4-Bromofluorobenzene 90.0 % 75-125 " " " " "			"	"	"	"	23	/5-1	90.0%		rie	surrogate: 4-Bromofluorobenze

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280

San Bernardino, CA 92408

Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Petroleum Hydrocarbon Analysis by H&P 8260SV

	1101 110010 000000000000000000000000000											
Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes		
SV-1-5 (E105093-01) Vapor	Sampled: 27-May-21	Received: 27-M	[ay-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-1-15 (E105093-02) Vapor	r Sampled: 27-May-21	Received: 27-M	May-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-2-5 (E105093-03) Vapor	Sampled: 27-May-21	Received: 27-M	lay-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-2-15 (E105093-04) Vapor	r Sampled: 27-May-21	Received: 27-M	May-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-3-5 (E105093-05) Vapor	Sampled: 27-May-21	Received: 27-M	lay-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-3-15 (E105093-06) Vapor	r Sampled: 27-May-21	Received: 27-M	May-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-4-5 (E105093-07) Vapor	Sampled: 27-May-21	Received: 27-M	lay-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-4-15 (E105093-08) Vapor	r Sampled: 27-May-21	Received: 27-N	May-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			
SV-5-5 (E105093-09) Vapor	Sampled: 27-May-21	Received: 27-M	lay-21									
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280

San Bernardino, CA 92408

Project: ST052721-SB2

Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen Reported: 09-Jun-21 09:48

Petroleum Hydrocarbon Analysis by H&P 8260SV

Analyte	Result	MDL	Reporting Limit	Units	Dilution Factor	Batch	Prepared	Analyzed	Method	Notes
SV-5-15 (E105093-10) Vapor	Sampled: 27-May-21	Received: 27-M	May-21							
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
SV-6-5 (E105093-11) Vapor	Sampled: 27-May-21	Received: 27-M	ay-21							
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
SV-6-15 (E105093-12) Vapor	Sampled: 27-May-21	Received: 27-M	May-21							
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
SV-6-15 REP (E105093-13) Va	apor Sampled: 27-Ma	y-21 Received	: 27-May-21							
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
SV-7-5 (E105093-14) Vapor	Sampled: 27-May-21	Received: 27-M	ay-21							
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	
SV-7-15 (E105093-15) Vapor	Sampled: 27-May-21	Received: 27-M	May-21							
TPHv (C5 - C12)	ND		160000	ug/m3	0.04	EE12703	27-May-21	27-May-21	H&P 8260SV	

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Reported:

09-Jun-21 09:48

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy Project Manager: Alicia Jansen

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE12703 - EPA 5030					
Blank (EE12703-BLK1)				Prepared &	Analyzed: 27-1
1,1-Difluoroethane (LCC)	ND	400	ug/m3		
Dichlorodifluoromethane (F12)	ND	400	"		
Chloromethane	ND	400	"		
Vinyl chloride	ND	40	"		
Bromomethane	ND	400	"		
Chloroethane	ND	400	"		
Trichlorofluoromethane (F11)	ND	400	"		
1,1-Dichloroethene	ND	400	"		
1,1,2 Trichlorotrifluoroethane (F113)	ND	400	"		
Methylene chloride (Dichloromethane)	ND	400	"		
Methyl tertiary-butyl ether (MTBE)	ND	400	"		
trans-1,2-Dichloroethene	ND	400	"		
1,1-Dichloroethane	ND	400	"		
2,2-Dichloropropane	ND	400	"		
cis-1,2-Dichloroethene	ND	400	"		
Chloroform	ND	80	"		
Bromochloromethane	ND	400	"		
1,1,1-Trichloroethane	ND	400	"		
1,1-Dichloropropene	ND	400	"		
Carbon tetrachloride	ND	80	"		
1,2-Dichloroethane (EDC)	ND	80	"		
Benzene	ND	80	"		
Trichloroethene	ND	80	"		
1,2-Dichloropropane	ND	400	"		
Bromodichloromethane	ND	400	"		
Dibromomethane	ND	400	"		
cis-1,3-Dichloropropene	ND	400	"		
Toluene	ND	800	"		
trans-1,3-Dichloropropene	ND	400	"		
1,1,2-Trichloroethane	ND	400	"		
1,2-Dibromoethane (EDB)	ND	400	"		
1,3-Dichloropropane	ND	400	"		
Tetrachloroethene	ND	80	"		
Dibromochloromethane	ND	400	"		

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

RPD

Limit

Notes

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408

Analyte

Project Number: 185805145/ Industrial Pkwy Reported:
Project Manager: Alicia Jansen 09-Jun-21 09:48

Source

Result

%REC

%REC

Limits

RPD

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Units

Reporting

Limit

Result

Spike

Level

Blank (EE12703-BLK1)				Prepared & Anal	vzed: 27-May-2	1
Chlorobenzene	ND	80	ug/m3	Tropurou commu	27 11111 2	<u>-</u>
Ethylbenzene	ND ND	400	ug/III3			
1,1,2-Tetrachloroethane	ND	400	"			
n,p-Xylene	ND ND	400	"			
o-Xylene	ND ND	400	"			
Styrene	ND	400	"			
Bromoform	ND ND	400	"			
sopropylbenzene (Cumene)	ND ND	400	"			
1,1,2,2-Tetrachloroethane	ND ND	400	"			
,2,3-Trichloropropane	ND ND	400	,,			
-Propylbenzene	ND ND	400	"			
rropytoenzene Gromobenzene	ND ND	400	"			
,3,5-Trimethylbenzene	ND ND	400	,,			
-Chlorotoluene	ND ND	400	,,			
-Chlorotoluene	ND ND	400 400	,,			
rt-Butylbenzene	ND ND	400	"			
2,4-Trimethylbenzene	ND ND	400 400	"			
c-Butylbenzene	ND ND	400 400	"			
-Isopropyltoluene	ND ND	400 400	"			
			"			
,3-Dichlorobenzene	ND	400	"			
,4-Dichlorobenzene	ND	400	"			
a-Butylbenzene	ND	400	"			
2-Dichlorobenzene	ND	400	"			
,2-Dibromo-3-chloropropane	ND	4000	"			
,2,4-Trichlorobenzene	ND	400	"			
Hexachlorobutadiene	ND	400				
Naphthalene	ND	80	"			
,2,3-Trichlorobenzene	ND	400	"			
Surrogate: Dibromofluoromethane	2060		"	2000	103	75-125
Surrogate: 1,2-Dichloroethane-d4	1840		"	2000	92.1	75-125
Surrogate: Toluene-d8	1770		"	2000	88.6	75-125
'urrogate: 4-Bromofluorobenzene	1730		"	2000	86.7	75-125

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino 735 E Carnegie Dr., Ste 280 Project: ST052721-SB2

San Bernardino, CA 92408

Project Number: 185805145/ Industrial Pkwy

Spike

Source

Project Manager: Alicia Jansen

Reporting

Reported: 09-Jun-21 09:48

RPD

%REC

Volatile Organic Compounds by H&P 8260SV - Quality Control H&P Mobile Geochemistry, Inc.

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EE12703 - EPA 5030										
LCS (EE12703-BS1)				Prepared &	k Analyzed:	27-May-2	1			
Dichlorodifluoromethane (F12)	6800	500	ug/m3	5000		135	70-130			QL-1H
Vinyl chloride	6200	50	"	5000		125	70-130			
Chloroethane	8200	500	"	5000		164	70-130			QL-1H
Trichlorofluoromethane (F11)	14000	500	"	5000		276	70-130			QL-1H
1,1-Dichloroethene	4700	500	"	5000		94.3	70-130			
1,1,2 Trichlorotrifluoroethane (F113)	5000	500	"	5000		99.4	70-130			
Methylene chloride (Dichloromethane)	4500	500	"	5000		89.2	70-130			
trans-1,2-Dichloroethene	4500	500	"	5000		90.4	70-130			
1,1-Dichloroethane	4300	500	"	5000		86.7	70-130			
cis-1,2-Dichloroethene	4700	500	"	5000		94.5	70-130			
Chloroform	4500	100	"	5000		89.7	70-130			
1,1,1-Trichloroethane	4600	500	"	5000		92.1	70-130			
Carbon tetrachloride	4900	100	"	5000		98.7	70-130			
1,2-Dichloroethane (EDC)	4400	100	"	5000		87.6	70-130			
Benzene	4600	100	"	5000		92.1	70-130			
Trichloroethene	5100	100	"	5000		102	70-130			
Toluene	4400	1000	"	5000		87.8	70-130			
1,1,2-Trichloroethane	4200	500	"	5000		83.9	70-130			
Tetrachloroethene	5300	100	"	5000		105	70-130			
Ethylbenzene	4900	500	"	5000		98.2	70-130			
1,1,1,2-Tetrachloroethane	5100	500	"	5000		101	70-130			
m,p-Xylene	10000	500	"	10000		103	70-130			
o-Xylene	5000	500	"	5000		99.5	70-130			
1,1,2,2-Tetrachloroethane	3500	500	"	5000		70.5	70-130			
Surrogate: Dibromofluoromethane	2600		"	2500		104	75-125			
Surrogate: 1,2-Dichloroethane-d4	2160		"	2500		86.5	75-125			
Surrogate: Toluene-d8	2550		"	2500		102	75-125			
Surrogate: 4-Bromofluorobenzene	2000		"	2500		80.1	75-125			

2470 Impala Drive Carlsbad, CA 92010 760-804-9678 Phone 760-804-9159 Fax

Stantec - San Bernardino

Project: ST052721-SB2

735 E Carnegie Dr., Ste 280 San Bernardino, CA 92408 Project Number: 185805145/ Industrial Pkwy

Project Manager: Alicia Jansen

Reported: 09-Jun-21 09:48

Petroleum Hydrocarbon Analysis by H&P 8260SV - Quality Control

 $\label{lem:hard-condition} \textbf{H\&P Mobile Geochemistry, Inc.}$

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EE12703 - EPA 5030

Blank (EE12703-BLK1) Prepared & Analyzed: 27-May-21

TPHv (C5 - C12) ND 160000 ug/m3

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 05/27/21 Page ___ of _2

	Lal	o Client an	d Projec	t Information								5	Sample	e Rec	eipt (L	ab Us	e Only)
Lab Client/Consultant:	ter			Project Name / #:	185805 14	5	18 74 11	(inter	different to		Date	Rec'd:	5/7	172	Contr	ol #: 2	102	71 a
Lab Client Project Manager:	cla Jansen			Project Location: 5. Report E-Mail(s): mitchell. be alicia. jans	720 la Jestina	Ph	5.	Berns	din		H&P	Project	# 5-	TO	57	721	-5	Ra
Lab Client Address: 735 E. Ca	menie D	14		Report E-Mail(s):	ames dewoo	duas	tante	C. LOV	2		Lab V	Vork Or	der# f	= 1	05	09	3	Ua
Lab Client City, State, Zip:	ernardino (C	A 924	08	mitchell be	ohn e stan	telc.co	m				Samp	ole Intac	t:	es [No [☐ See I	Notes Be	low
Phone Number: 909 –	367 13L	16	00	alicia.jans	en@staut	ec.us	m		nas l		Lienter in	eipt Gau					Temp:	
Reporting Requirer	201-11	10	urnarour		CARROLICA DI ANCIONI DI CONTROLICA DI CONTROLICA DI CONTROLICA DI CONTROLICA DI CONTROLICA DI CONTROLICA DI CO	npler Info		STATE OF THE PARTY			Outsi	de Lab:						
Standard Report Level III			ganan Hansanda est	s for preliminary	Sampler(s): B.V						Rece	ipt Note	s/Tracki	ng #:				
Excel EDD Other EDD:				or final report)	Signature:		ales	, spar										
CA Geotracker Global ID:		Rush	(specify):_		ALCOHOL: NAME OF THE OWNER, THE O	127/2	.1									Lak	PM Initia	ole:
Additional Instructions to Labo		-	-	de Isla			-			AGE VER	READ IN					Lat	1 IVI IIIIII	:IS.
□ μg/L □ μg/m³ □ ppbv				SAMPLE TYPE	CONTAINER SIZE & TYPE	NER #)	only:	VOCs Standard Full List ▼ 8260SV □ TO-15	VOCs Short List / Project List	W T0-15	'm =	Aromatic/Aliphatic Fractions 8260SVm TO-15m	Leak Check Compound	Methane by EPA 8015m	es by ASTM D1945	2.80) 18x1	
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Stand	OCs Short	Naphthalene	PHv as Ga	vromatic/Alip ☐ 8260SVm	eak Check	Methane by	Fixed Gases by			
W-1 -			0.00		00			(7)	7 11				- 9	-				
111-1-5		577/2	XUU	\ \	(+)	318		\times			X	1	X					CA DAMESTICATION
SV-1-15		527/2	800	SV	1	332		$\stackrel{\times}{\nearrow}$			X		X					
SV-1-15 SV-2-5		5.47/2	-	SV	0.5	10		X			X		X	<u> </u>				
SV-1-15 SV-2-5 SV-2-15		527/2		SV	(J.)	33)		XXX			XXX		X	<u> </u>				
5V - 1 - 15 5V - 1 - 15 5V - 2 - 15 5V - 3 - 5		5.47/2	800 817 817 851	S.V		33) 299 87 287		XXXX			XXXX		X	<u> </u>				
SV-1-15 SV-2-15 SV-3-15 SV-3-15		5.47/2	800 317 817	S-V	(J.)	33) 299 87 287 348		X X X X X			XXXXX			<u> </u>				
SV-1-15 SV-2-5 SV-2-15 SV-3-5 SV-3-15		5.47/2	800 817 817 851	S.V	U, \	33) 299 87 287 348 33)		XXXXXX			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
5V-1-15 5V-1-15 5V-2-15 5V-3-5 5V-3-15 5V-4-5 5V-4-15		5.47/2	800 817 817 851 851	S.V		33) 299 87 287 348		XXXXXXX			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
		5.47/2	800 817 817 851 851 913	S.V		33) 299 87 287 348 33)		XXXXXXXX							*	TL		
SV-1-15 SV-1-15 SV-2-15 SV-3-5 SV-3-15 SV-4-15 SV-4-15 SV-5-5		5.47/2	800 817 817 851 851 913			33) 299 87 287 348 33)		XXXXXXXXXX			X X X X X X X X							
		Company:	800 817 817 851 851 913	Dale:	Time: /345	33) 299 87 287 348 33) 318	73)	WXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			Company	HA		Date	5/2		Time:	345

2470 Impala Drive, Carlsbad, CA 92010 & Field Office - Signal Hill, CA W handpmg.com E info@handpmg.com P 760.804.9678 F 760.804.9159

VAPOR / AIR Chain of Custody

DATE: 5/27/2|
Page 2 of 2

	Lab	Client an	d Projec	t Information									Sample	e Rec	eipt (La	ab Use (Only)	
Lab Client/Consultant: STANTA	EC			Project Name / #:	85805	145) e de la	di ota		Da	te Rec'd:	5/27	7/21	Control	1#:211	33710	00/01
Lab Client Project Manager:	ia Jans	en		Project Location:	5770 I	ndii	Stn	ial [Penn		H&I	Project	# ST	-01	527	121-	SBI	
Lab Client Address: 735 East	Carneon	TO SEE OF TOTAL PROPERTY.	280	Report E-Mail(s): - Mitchell . b alicia . to	ames de	voods (c	Ston	ter	com		Lab	Work Or	der#	EI	050	193		
Lab Client City, State, Zip: Son Bo	rnarding		2408	Mitchell. b	om@ston	itec.	om	(60			San	nple Intac	t: Y	es 🗌	No 🗌	See Note	es Below	
Phone Number: 909-360-	1346	, (,) (,		allicia . To	in son (a) Sto	intec.('om				Re	ceipt Gau	ige ID:			T	emp:	
Reporting Requireme		1	urnarour	nd Time	Sar	npler Info	rmatio	n			Out	side Lab:						
Standard Report Level III	Level IV	✓ Stand	lard (7 days	s for preliminary	Sampler(s):	Villar	osal	les	Line		Red	eipt Note	s/Tracki	ng #:	had a			
Excel EDD Other EDD:		repor	t, 10 days f	or final report)	Signature:	3/	- /	(Fige	Total a									
CA Geotracker Global ID:		Rush	(specify):_		Date: 05	1271	121									Lab Pl	M Initials:	
Additional Instructions to Labora	atory: 101212	1 Doul	nae 9	+ \$1ag1 4	V VOCC L	WC .												
* Preferred VOC units (please cho			13 (10°).		ne storike i lide Medica referencie Medica referencie			l Full List]TO-15	st / Project List	710-15	170-15	hatic Fractions	mpound A He	A 8015m	ASTM D1945			
SAMPLE NAME	FIELD POINT NAME (if applicable)	DATE mm/dd/yy	TIME 24hr clock	SAMPLE TYPE Indoor Air (IA), Ambient Air (AA), Subslab (SS), Soil Vapor (SV)	CONTAINER SIZE & TYPE 400mL/1L/6L Summa, Tedlar, Tube, etc.	CONTAINER ID (###)	Lab use only: Receipt Vac	VOCs Standard	ا تا			Aromatic/Aliphatic Fractions	Leak Check Compound	Methane by EPA 8015m	Fixed Gases by ASTM D1945			
SV-5-15		5/27/21	1037	S. V	G.S	332		X			>		X		200			
SV-6-5			1127			348		X		A	\times		X					
SV-6-15			1127			287		X			>	<	X					
SV-775 6-15REP			1127			87		X			\geq		X		100.76			
SV-7-157-5			1226			318		\times		18	\geq	4	\times					
SV- 7-15			1226								>	4	\times					
											-							
Approved Deligned Sheekhyr		Comre		Date:	Time:	Pagained him					Compa	nov:	10	Data		Tim	0'	
Approved/Retinquished by		Company:	40	Date: 5/27/2/	1345 Time:	Received by:	de	M	JB.		Compa	HV	RP	Date:	5/2	7/21 Tim	17	15
Approved/Relinquished by:		Company		Date:	Time:	Received by:					Compa			Date:	-	Time	e:	

Log Sheet: Soil Vapor Sampling with Syringe

Revised: 3/22/2017 Effective: 3/24/2017 Page 1 of 1

Scanned: EC

Reviewed:

Revision: 4

FMS004

05/27/24 H&P Rep(s): &. Villarosales Date GAN TELLUNDINO Page. FORT/SE Industrial Ruly Bohn 1295-12625015 Mitchell 5770 Consultant: Consultant Rep(s): 1&P Project #: Site Address:

RL = for LCC Fail Resample Key RD = for Dilution ProbeVac RS = Resample 115 Flow Rate (mL/min) Sample 200 282 202 Purge & Collection Information 002 280 682 202 200 (mL/min) (min:sec) <u>子</u>の: II Ş Pump Time 35.11 COZ 11:04 10:11 082 €.E □ 1,1,1,2-TFA Purge Plow Rate **Z**1,1-DFA □ Other: 290 2002 007 200 002 230 200 202 00% □ IPA 認 2409 2213 22(3 18860 A cloth saturated with LCC is placed around done for all samples unless otherwise noted. tubing connections and probe seal. This is 222 2213 Leak Check Compound Check Leak E eo sec Shut In Test E Dia (in.) 2.26 215 225 522 2.15 2.25 Dry Bent. 225 2.25 225 2.28 Ht (in.) 7 Dry Bent. 7 2 9 0 562 522 222 225 2.25 225 1.25 Sand Dia (in.) 2.25 522 1.15 Probe Specs Z Dry Bent 50% Length OD (in.) Ht (in.) 2 Tubing | Tubing | Sand 7 P Sand 40% 7 2 7 2 2 4 0 5 PV Includes: A Tubing Purge Volume Information 1 7 7 10 7 A Z 7 グ Z 4 4 4 4 E 7 4 4 4 4 Probe Depth (ff) 1 5 N 5 9 1 COST 4 TIN Sample 0800 4601 4601 Time 2160 1580 70 1857 Sample Volume PV Amount: 20 20 20 50 B 29 05 20 20 20 2 (CC) Sample Information Syringe ID 222 22 222 3.18 は 光 318 BA REP **Equipment Info** V 1 1 1.5 V Pump ID#: 009 5-15 .5-6 3-15 Point ID Inline Gauge ID#: 3 3 4 1 1 Z 3 8 က 4 2 9 ∞ 6

PV accidently caled USING 50 Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above):

X Replicate did not watch. Resampled different probe (50-6-15 REP) X PV accidently continued. (5V-6-15 REP)

PU Should f tobing.

2358M

Revised: 3/22/2017 Effective: 3/24/2017 Reviewed K Scanned: N Log Sheet: Soil Vapor Sampling with Syringe ਰੱ 3.V.16.050 Date: H&P Rep(s): San Pernendino 57052724-582/TEH/LAW Frohm 5770 Industria tante H&P Project #: Consultant: Consultant Rep(s): Site Address:

Revision: 4

Page 1 of 1

FMS004

RL = for LCC Fail Resample Key RD = for Dilution**ProbeVac** -20 RS = Resample Y Sample Flow Rate (mL/min) 200 Purge & Collection Information 62 (mL/min) (min:sec) 10, Pump Time 10:04 A cloth saturated with LCC is placed around 1,1,1,2-TFA Purge Plow Rate Vol (mL) 11-DFA □ Other: 230 83 262 200 200 tubing connections and probe seal. This is \square IPA done for all samples unless otherwise noted. \square Othe 25.55 223 Leak Check Compound Check Leak E eo sec Shut In Test E 225 Ht (in.) Dia (in.) Dry Bent. 225 225 Dry Bent. 0 2.25 225 Sand Dia (in.) 2.25 2.28 52.2 Probe Specs ☑ Dry Bent 50% Ski. OD (in.) Ht (in.) Tubing | Sand Sand 40% PV Includes: Tubing Purge Volume Information 7 T E K * Tubing Depth | Length | \oplus 6 4 Probe 5 (\sharp) 1226 Sample 20105 Time PV Amount: Volume B Sample 20 (00) Sample Information Syringe ID 348 3/8 5N-10-15 REP 600 **Equipment Info** 16-19 7-15 Point ID Inline Gauge ID#: Pump ID#: 2 က Ŋ 10 7 9 ∞ O

Site Notes such as weather, visitors, scope deviations, health & safety issues, etc. (When making sample specific notes, reference the line number above)

Revision: 5 Revised: 2/8/2019 Effective: 2/8/2019

Page 1 of 1

FMS009

Log Sheet: Landtec Meter

51052721-5B2/1EH/LAW

H&P Project #:

Site Address: 5770 Industrial Pleny Consultant:

Nitchell Bohn stanted

Consultant Rep(s):

H&P Rep(s): B. V: llanesales 12/21/20

Page:

Date:

Reviewed: 2

Scanned: EC

LADBS Certification Info	Methane Testing License #10231	Instrument: Landtec GFM 2000	Instrument Accuracy: ±3% CH.	Landtec Equipment ID# ##	Manometer ID#: 023	
	Barometric Pressure ("Hr)	n/a	78.30	78.8 28.30	n/a	
	N ₂ (%)	70	69.4	3.02	55 - 85	
ion	02 (%)	4	4.4	4.7	2.5 - 5.5	
000 Calibrat	CO ₂ (%)	15	15.2 4.4	14.4	13.5 - 16.5	
Landtec GEM 2000 Calibration	CH ₄ (%)	15	15.2	7 2	13.5 - 16.5 13.5 - 16.5 2.5 - 5.5	
Lan	Time	n/a	4280	325	n/a	
		Calibration Standard	Opening Calibration 0824	Closing Calibration	Acceptable Range	

Landtec Equipment ID#: 846 Manometer ID#: 023

	T	Τ								
Field Notes										
Probe Pressure ("H ₂ O)	0.0	l	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Barometric Pressure ("Hg)	28.27	4282	28.27	28.27	22.82	28.27	18.27	72.82	28.27	7
N ₂ (%)	3.64	\$0.0	80.3	80.3	2.08	61.0	80.4	80.9	2	80.9
02 (%)	14.5	14.1	19.5	19.1	19.0	1.91	17.6	16.7	19.3	18.6
CO ₂ (%)	4.0	8.0	0.2	0.5	4.0	2.9	0.7	7.4	6.6	0.5
CH₄ (%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Probe Depth (ft)	5	15	5	15	7	15	6	15	5	15
Sample Time	hha1	1044	1049	0501	1055	1058	1103	1106	1247	1253
Point ID	1 41-1-5	2 - 15	3 54-2-5	712	5 W-3-5	6 - 15	7 W-4-5	8 - 15	9 W-5-5	0 51-5-15

Site Notes (e.g. weather, visitors, scope deviations, health & safety issues, etc.):

Log Sheet: Landtec Meter

1-ECH/1-4V H&P Project #: 57052721 - 582/ Site Address: 5770 Industrial Thoug Sun Bernardino Mitchell Bohn Tantec Consultant: Consultant Rep(s):

12/23/20 of 2 Date: Page:

Revised: 2/8/2019 Effective: 2/8/2019

Page 1 of 1

FMS009 Revision: 5

H&P Rep(s): 3.Villaracales

Reviewed. EC

Scanned: [Z

LADBS Certification Info

Methane Testing License #10231

Instrument: Landtec GEM 2000 Instrument Accuracy: ±3% CH₄

Landtec Equipment ID#: 018

	Lan	Landtec GEM 2000 Calibration	000 Calibrat	ion		
	Time	CH 4 (%)	CO ₂ (%)	02 (%)	N ₂ (%)	Barometric Pressure ("Hg)
Calibration Standard	n/a	15	15	4	02	п/а
Opening Calibration	HE80	2.51 4880	15.2	4.4	69.4 28.31	18.37
Closing Calibration	(425	4.4	14.4	4.2	8.Ot	OE-82 8-0£
Acceptable Range	n/a	13.5 - 16.5	13.5 - 16.5 13.5 - 16.5 2.5 - 5.5	2.5 - 5.5	55 - 85	n/a

Manometer ID#: 023	
Manometer	Probe
	Barometric
n/a	
55 - 85	
Ω Q	

- 14										
	Point ID	Sample Time	Probe Depth (ft)	CH₄ (%)	CO ₂ (%)	05 (%)	N ₂ (%)	Barometric Pressure ("Hg)	Probe Pressure ("H ₂ O)	Field Notes
-	54-6-5	1256	8	0.0	0.1	19.6	80.2	80.2 28.27 0.0	0.0	
7	51-6-15	1300	15	0.0	0.2	18.8	6.18	81.0 28.17 0.0	0.0	
က	W-7-6	1315	8	0.0	0.1	19.9	19.9	58.30 O.O	O.O	
4	S1-E-18	1320	15	0.0	5.0	19.3	\$0.4	Zx.30 0.0	0.0	
2										
9										
7										
oo										
6										
10										

Site Notes (e.g. weather, visitors, scope deviations, health & safety issues, etc.):